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ABSTRACT

This report presents the results of the first phase of
an investigation of the dynamic characteristics of the
Radio Astronomy Explorer (RAE) satellite equipped
with a double=V antenna. During this first phase,
computer programs which will provide the analytical
tools necessary for continued study of the satellite
dynamic performance have been prepared. For this
purpose, a flexible=body analog computer program, a
rigid-body digital computer program, and a flexible=
body digital computer program were developed. The
first two programs have been checked out and are
fully described and included in this report, together
with results of checkout runs. The flexible~body
computer program is being checked out; the detailed
derivation and description of the simulation is con=~
tained in this report. It is recommended that the
next phase of the study provide for improvement in
the accuracy and capability of the computer simula~
tions and evaluation of satellite and control system
dynamics, damping requirements, and overall
satellite design.
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PREFACE

This report is the first of two volumes to be
published on the development of formulations and computer
simulations to describe the dynamics of the Radio
Astronomy Explorer Satellite (RAE). The first volume
contains most of the formulation of the study, and
descriptions of rigid body digital and flexible-body
analog simulations. The second volume will review
the formulation and describe a flexible-body digital pro-
gram and parametric study used to design a libration
damper. There are instances where the information
contained in the first document will be updated in
the second volume, and some of the assumptions in the math
formulation will be modified.

The objective of the RAE satellite project is to
measure, with modest directivity, the intensity of
radio signals from celestial sources as a function of
frequency, direction, and time. To achieve this
objective, the spacecraft will employ a pair of long
"y" antennas back to back; thus forming a large "X"
with a central body (core) of instrumentation at the
juncture of the antennas. The antennas are tubular
structures, which are deployed from the central body
once the spacecraft is in a 6000 Km circular orbit.
The tubes are about 0.6 inches in diameter and 750
feet long from central body to tip. Gravity-gradient
attitude stabilization is to be used so that one set
of "V'" antennas will always point toward the earth,
the other away. The dimensions and material characteristics
of the long antennas pose a flexible~body dynamics
problem.

The prime purpose of this study was to develop a
formulation and computer simulation to accurately
describe the dynamic behavior of the RAE spacecraft.
This computer simulation was then to be used to study:

a, The general spacecraft stability

b. Deployment and capture techniques.

o,
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¢, Design parameters for a libration damper

d. The effect of initial conditions and parameter
variations on capture and dynamic behavior.

e, The flexible nature of the booms

This was the first known development of a flexible-body
gravity-gradient dynamics simulation which included
thermal bending, solar pressure, occultation and complete
three degrees of freedom of motion.

The approach was to develop a system of equations,
based on theory and known laboratory results, to describe
the motion of the spacecraft and then to program these
equations for both analog and digital computer simulation
of the dynamics., It was necessary to extrapolate from
laboratory data and make several assumptions since "in~-
orbit'" data on boom characteristics are not available,

The non-linear nature of the problem does not allow a
concise closed form solution; therefore, many approximations
are necessary. The assumptions and formulations for

the analog and digital simulations were different.

For the flexible-~body, planar, analog simulation, a

series of lumped mass and spring systems was assumed

to represent the X antennas. The classical Newtonian

type formulation was used, For the flexible-body digital
simulation the continuous beam approach was used by
expanding the antenna deflections in terms of a set of
ortho-normal cantilever beam mode shapes. The formulation
used the Lagrangian approach,

Since this was a pioneer effort, it was essential
to develop means for evaluating the validity of the
assumptions and approximations involved so as to have
a high degree of confidence in the resulting computer
simulation, This capability of self evaluation was
achieved by using the following four techniques:

1. Three separate computer simulations were
developed which are capable of checking each
other at some specific limit. These
simulations are:

vi



a, Aplanar, flexible~body simulation on the
analog computer,

b. A three~dimensional, rigid-body simulation
on the digital computer,

c. A three-dimensional, flexible-body simulation
on the digital computer.

2. The computer simulations were developed modularly
to allow systematic check~out of each separate
function of the program. Thus, it was often
possible to check separate functions of a pro-
gram against known classical results to provide
a measure of confidence in the complete simulation.

3. The complete simulations were checked, where
possible, against any known results from
independent sources. There are a few specific
limiting cases where this check is possible.

4, The flexible~body digital simulation was further
checked for conservation of energy. The system
energy was computed at some initial time; the
simulation was then allowed to run for several
orbits, after which the system energy was again
computed and compared to the initial value.

The significant contribution of this study effort
is the incorporation of flexible~body effects into the
dynamic motions of a gravity-gradient stabilization
system. The rigid body dynamics of gravity-gradient
have been studied rather extensively; however, little
or no analysis was available on flexible-body gravity-
gradient dynamics at the time this study was conducted.
It is apparent that the flexible nature of the system
becomes important when one is considering antenna lengths of
1500 feet with equilibrium tip deflections of about 150 feet,
When the effects of solar pressure, thermal bending,
orbit eccentricity, and occultation are included in the

vii



formulation, the development of a flexible-body dynamic
model is a very complicated and tedious procedure,
Consequently, some of the assumptions and approaches

made in this first try at the problem are not as accurate
as one would like. DPresent effort is directed toward
refining the assumptions to make them less restrictive
than those described in this report.

David L, Blanchard
Technical Director
of Contract
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1.1

1.2

INTRODUC TION

OBJECTIVES OF THE STUDY. =~ The primary objective of Phase A of the
RAE dynamics study is the development of a suitable system of equations
and both analog and digital computer programs for the dynamics analysis

of a RAE satellite of the general double-V antenna configuration. Capability
will be provided for (a) the inclusion of all significant disturbing influences
in the orbifal environment, (b) parametric studies of satellite design
characteristics and orbital parameters, (c) the investigation of long~term
satellite stability, and (d) the evaluation of damping and control system
requirements and performance.

Secondary objectives of Phase A are the use of these equations and computer
programs to perform preliminary evaluations of satellite and control system
dynamics over a limited range of conditions during the deployment/acquisition
and mission phases of satellite operation.

METHOD OF APPROACH ~- The general approach of the study has been to
provide (through three separate computer programs) a capability for analyzing
and determining the significance of individual aspects of the dynamics pro-
blem, as well as a means for comparing results and evaluating the validity of
pertinent assumptions and approximations involved in the respective simula-
tions. The three programs, described briefly here and extensively in later
sections of this report, are a flexible=body analog program, a rigid-body
digital program, and a flexible=body digital program,

1.2.1 Analog Computer Program. -~ The basic objéctives of the analog
simulation of the flexible satellite are to investigate planar dynamics
in the gravity-gradient field, and to evaluate the effectiveness of
various deploym'ent techniques and the performance of proposed control
system models. The analog simulation is specifically adaptable to
monitoring of a continuous output to provide a visual display of the
satellite in operation. System performance and the effects of parameter
changes are readily observed and quickly evaluated.

1.2.2 Rigid-Body Digital Computer Program., =~=- The purpose of the
rigid-body digital simulation is basically to provide checks for the
flexible-body analog and digital progfams, and a means for evaluating,
through comparison of results, the effects of flexibility on deployment
techniques, control system peirformance, and long-term stability.

In addition, the rigid-body prograrmn provides the capability for deter-
mining the effects of three~dimensional inertial coupling and non-
Keplerian orbital perturbations, independent of the dynamics associated
with flexibility. Quite apart from the dynamics analysis itself, the
rigid-body program is employed in the evaluation of numerical techniques




1.2.

applicable to both digital programs, in particular, the comparison
of various integration routines for three-degree~-of-freedom
rotational dynamics on the basis of computational speed and accuracy.

3 Flexible~-Body Digital Computer Program. ~- The flexible=body
digital computer program furnishes a complete and accurate simulation
of three~-dimensional, flexible~body dynamics in the orbital environ=
ment. It provides the capability for analyzing, either combined or
separately, the effects on deployment, acquisition, and long<term
stability of the following: antenna flexibility, three-dimensional
inertial coupling, all significant disturbances of the orbital environ=
ment, inherent damping within the satellite, the performance of

control systems and additional damping devices, initial conditions and
errors in orbital injection and in vehicle attitude and attitude~rate,
and parametric changes in vehicle design variables and orbital elements.
The program also allows evaluation of the relative importance of higher
bending modes for the flexible antennas, and of bending moments at the
antenna roots.

1.3 SUMMARY OF RESULTS. =~ Results of Phase A of the RAE dynamics study

are

described here briefly; more extensive descriptions are contained in

later sections dealing with details of the computer programs and derivations
of the dynamical equations.

1.3.

1.3,

1 Analog Program. == The analog simulation of the flexible body
has been programmed for planar motion of the satellite in a circular
orbit. Two beams, each representing a symmetric pair of diametric=
ally opposite antennas, are simulated by eight-element, lumped-para-
meter models. Deployment is simulated by a switching technique that
switches in successive mass elements as they are extended from the
central hub of the satellite. A simple control system is represented
by torquing at the central hub. A visual display has been developed

to permit continuous observation of the entire satellite, as well as to
locate its position in orbit. Check cases have been run to measure
static tip deflections due to gravity gradient, and fundamental
oscillatory modes and frequencies of the satellite as a whole. Thermal
bending and solar pressure are not included in the simulation,

2 Rigid-Body Digital Program. -= The digital simulation of the
rigid body has been programmed for full three~dimensional motion
of the satellite with either an analytic (Keplerian) orbital ephemeris or

- a more exact N-body ephemeris including the effect of Earth oblateness.

The program calculates the direction of the sun-line and the visible
fraction of the solar disc during occultation. Either direction cosines
or quaternions may be used in the integration routine for rotational
dynamics, though quaternions have been demonstrated somewhat
superior on the basis of computational speed and accuracy, Check
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cases have been run for the frequencies and amplitudes of planar
libration, and for the inertial coupling of non=planar dynamics.

1.3.3  Flexible-Body Digital Program. ~= The digital simulation of the
flexible body has been programmed for full three-dimensional motion
of the satellite relative to its center of mass in a Keplerian orbit.
Deflections of each antenna in two perpendicular planes relative to
its undeformed axis are described by series expansions in terms of
the small-deflection mode shapes. Gravity-gradient forces and the
effects of thermal bending, solar pressure, and axial tension are
evaluated for the deformed configuration to first order in the modal
coefficients of the series expansions. The location of the sun~line
relative to the orbital plane is calculated using an analytic expression
for regression of the line of nodes; the visible fraction of the solar disc
is determined during occultation., Check cases for the program are
being run during the debugging process. Additional terms describing
the dynamics of deployment have been derived but are not included in
the program for Phase A.

1.3.4 Damper System Studies. =~ A review of currently available and
proposed damping techniques applicable to gravity-gradient stabilized
satellites has indicated a passive magnetic hysteresis damper to be
desirable for investigation in conjunction with the RAE design. This
damper, basically a TRW Systems concept, involves the addition of
an auxiliary pair of opposed booms skewed to the satellite antenna
plane and fixed within the central body so as to allow one relative
rotary degree of freedom. Relative motion is constrained by a torsion
wire and damped by magnetic hysteresis. The skewed two=body
system provides damping about all three satellite axes through
inertial cross=-coupling. Advantages of the system are mechanical
simplicity, reliability, and relatively high damping capability and
low steady~state attitude errors compared to other damper concepts,
This system has been incorporated in the rigid-body digital computer
program.

1.4 FORMAT OF THE REPORT. ~- A brief description of the satellite, the
antennas, the mission, and other pertinent data is contained in section 2,
The next three sections provide a detailed description of the three computer
simulations; the analog computer simulation, rigid=-body digital computer
program, and flexible-body digital computer program are described
respectively in sections 3, 4, and 5, Section 6 gives a discussion of control
system concepts and describes the control system which has been pro=-
grammed for the computer. Section 7 contains results of checkout runs
and typical cases from the computer programs. Section 8 presents con-
clusions and recommendations for future work. The appendixes contain
detailed analyses to support various aspects of the work and to justify the
methods of approach, The complete description of the rigid body digital
computer program is also given as appendix C.



2.1

2.2

2.3

DESCRIPTION OF THE PROBLEM

MISSION OBJECTIVES. == The basic mission objective of the RAE satellite
is to measure both the power spectral density and the location on the celestial
sphere of extraterrestrial radio signals over the range of frequencies from
0.3 to 7 mc. To permit quantization and separation of outer space signals
from Earth - generated signals, the satellite employs a double=V antenna
configuration with suitable radiometers and switching circuitry, providing
simultaneous and separate signal reception from celestial and terrestrial
sources. In addition, the double~V configuration is ideally suited to
gravity~gradient attitude stabilization, The variation of antenna gain
pattern with antenna deflection, and of effective antenna boresight with

both antenna deflection and vehicle attitude, constitutes a critical and
direct dependence of the radiometric mission upon satellite dynamics.

OPERATIONAL SEQUENCE OF MISSION. ~~ The RAE satellite after boost
and injection into orbit is separated from the final rocket stage and despun
by '"yo=yo!' despin devices. The satellite is then oriented with respect to
the local vertical by active control prior to deployment of the primary
antennas, Deployment is effected in such a fashion as to permit capture
of the satellite‘by the gravity-gradient field; this operation is denoted the
deployment/acquisition phase and is discussed in more detail later in this
report. Finally, the so=called mission phase involves damping of satellite
motion to a steady-state orientation aligned in the orbital plane along the
local vertical; measurements of power spectral density and direction of
radio signals are performed from this orientation. Precession of the
orbital line of nodes in inertial space, a function of orbital altitude,
inclination, and direction, permits coverage of a calculable percentage

of the celestial sphere during the useful operational lifetime of the
satellite.

NOMINAL SATELLITE PROPERTIES. =- The relatively long wavelengths
of interest =~ 40 to 1000 meters =~ require correspondingly long antenna
lengths; the nominal length of each antenna rod is 750 feet. The vertex
angle of each antenna V is a design variable influenced by desirable antenna
directivity, satellite attitude stability, and permissible static deflections
of the antenna tips due to gravity gradient; the nominal angle is 60 degrees.
Two dipole antennas of nominal length 75 feet are located perpendicular to
the plane of the four primary antennas. (These cross~orbit dipoles are
not included in the Phase A dynamics simulation of the RAE. ) The total
weight of the satellite is 326~1/4 pounds, the central hub being 36 inches
in diameter. The moments of inertia of the satellite with undeployed
antennas are 14. 50 slug=ft. & about the yaw axis, 13.37 slug~-ft. 2 about the
pitch axis, and 11.03 slug-ft. 2 about the roll axis; after deployment of the
four primary antennas, these inertias increase, respectively,to 67, 750
slug=~ft. 2, 271, 000 slug=-ft, 2, and 203, 250 slug-ft. 2 for the undeformed
configuration. The nominal antenna deployment rate is 0.5 ft/sec.



2.4

2.5

2.6

2.7

NOMINAL ANTENNA PROPERTIES. -~ Both the four primary and two’
cross~orbit antennas are overlapped deHavilland tubes of alloy 125 gold
flash on beryllium=copper. The tubes have a tape width of 2. 0 inches and a
thickness of 0. 002 inches of BeCu coated with 0, 0002 inch of silver, The
tube overlap at the seam is 81 degrees, resulting in a tube diameter of

0. 52 inch. The mass per unit length of the tube is 0. 482 x 10=3 slug/ft.

(0. 0155 1b/£t. ), and the average cross=-sectional inertia, based on a
spiraled antenna, is 105 %1076 in, Young's modulus for BeCu is 19 x 106
lb/in. 2 Structural damping is nominally 0. 00366 of critical, corresponding
to a log decrement of 0. 023 per cycle. Tube thermal properties are as
follows: specific heat 0. 10 Btu/1b="F; coefficient of thermal expansion

9.4 x 10~6/°F; thermal conductivity 65 Btu/hr=-ft=*F for alloy 125, and

230 Btu/hr=ft=°F for silver. Absorptivity of the external silver is 0. 10,
and emissivity is 0. 035 for the silver and 0. 87 for the internal black paint,

NOMINAL ORBITAL PARAMETERS. == The nominal orbit for the RAE is
a circular orbit of 6000 km. altitude and 50~degree inclination. The lo
value for orbital eccentricity due to injection errors is 0. 02, Direction of
travel in the orbit is prograde; and regression of the line of nodes in
inertial space is 0. 6344 deg/day about the Earth's polar axis. The orbital
period is 228. 4 minutes. The maximum time between periods of solar
occultation by the Earth is 77 days. The nominal launch date to provide
this maximum time outside the Earth's shadow is 54 days after the vernal
or autumnal equinox, e.g., May 15, 1967; the corresponding longitude of
the ascending node at launch is 207. 46 degrees, measured in the equatorial
plane of the Earth from the first point of Aries, ¥ .

INITIAL CONDITIONS PRIOR TO DEPLOYMENT. =« The nominal satellite
attitude relative to the local vertical just prior to deployment of the primary
antennas is as follows: pitch 0 % 2 degrees (lo ), roll 15 + 2 degrees (lo ),
and yaw unspecified. The initial angular rates relative to the local vertical
are 0% 0.1 rpm (1 ¢ ), about each axis.

DISTURBING INFLUENCES IN THE ORBITAL ENVIRONMENT. ~-- The
primary agent acting to cause static deflections of the satellite antennas is
the gravity-gradient force. In addition, the gravity gradient produces a
torque causing three-dimensional oscillations when the satellite is displaced
arbitrarily from its stable attitude aligned with the local vertical in the
orbital plane. Further disturbances causing dynamic bending of the antennas
and overall satellite oscillation about the local vertical are orbital eccen-
tricity, thermal temperature gradient across the antenna cross~sections,
and solar pressure, each of which represents a forcing function of funda-
mental period equal to the orbital period. Coupling of the dynamics
associated with these forcing functions occurs because of their dependence
upon satellite attitude and geometric shape as well as upon orbital position,
Higher frequency excitation is also caused by non-spherical nature of the
Earth's gravitational field. Occultation of the sun during passage through



the Earth's shadow presents a serious problem designated as ''solar shock, "
The sudden switching off and subsequent switching on of thermal bending and
solar pressure excites transient bending modes of the antennas which may
add constructively during successive occultations; structural damping is not
expected to provide significant transient decay during one orbit.

Disturbances that are not considered to be of primary importance,and are
therefore neglected in Phase A of the dynamics study,are those due to inter~
action of the satellite charge distribution and residual magnetic moment
with the Earth's magnetic field.



ANALOG SIMULATION

PURPOSE OF THE SIMULATION PROGRAM, -- The purpose of the analog
dynamics simulation of the NASA-Goddard Radio Astronomy Explorer satellite
is to evaluate deployment schemes and to study the acquisition phase of the
mission under the assumption of flexible booms. These problems have

. been considered in the past for rigid booms, but little effort has been ex-

pended on the flexible -boom problem,

The deployment techniques which will be evaluated using the analog dynam-
ics simulation will be primarily dead~beat control schemes in which antenna
deployment rate is modulated such that the error in the final attitude and
energy state at the time the booms are completely extended is minimized.

A study of this technique with the rigid boom assumption has been made and
is reported in appendix F.

Oscillations present after deployment will be reduced by internal damping
in the booms and by a central body damping system which may be either
active or passive. The effect of the internal damping will be evaluated.
Models of several central body damping systems will be simulated so that
parameters of these systems can be, in some sense, optimized.

MODEL FORMULATION.

3.2.1 Assumptions. =-- A suitable model of the satellite must be detailed
and accurate enough to perform acceptable studies of the deployment
and acquisition phases, yet must be compatible with the capacity and
capability of the analog computation facility., Consequently, several
assumptions have been made to reduce the size of the required simula-
tion without excessively compromising its usefulness. These assump-
tions reduce the problem to the planar case in which symmetry exists
with respect to the central body such that diametrically opposite booms
have the same shape, and only two booms need be simulated. Without
these conditions a useful analog simulation would be impossible with
the analog facility available. The assumptions made are:

a. Only the planar case in which the plane of the booms coincides
with the orbital plane is considered.

b. The only significant external force acting on the external booms
is the gravity-gradient force. Radiation pressure and thermal
bending have been neglected.

¢. The orbit is circular.

d. Initial conditions on opposing booms are symmetrical with re-
spect to the central body.



Agsumptions 2, 3, and 4 are necessary for symmetry to exist in the
diametrically opposite booms.,

Recent results indicate that a very short time constant is associated
with the establishment of a thermal gradient, so that thermal bending
will have some effect during the deployment/acquisition phase of the
mission,

3.2.2 Coordinates. -- Let the x and z axes be the local horizontal and local
vertical axes passing through the center of the satellite as shown in
figure 1, These axes are contained in the plane of the orbit. Since the
orbit is circular, these axes rotate with respect to inertial space at
the constant orbital rate Q. The rotation angle at any time is given by
the angle y.

The orientation of the central body is defined with respect to the local
axes by the angle ¢ which is the angle between the z-axis and the center
line of the satellite. The angle a defines the undeflected posgitions of
the booms as shown. In general, the booms are given as displacements
from these undeflected axes, To allow larger deflections in the model -
than would be possible with a single baseline, it has been convenient to
define a secondary baseline from which the displacements of the outer
section of the boom are measured.

The boom coordinate axes using the two baselines are also shown in
figure 1. The V-W axes are fixed to the central body and describe the
deflection of the section of the boom nearest the central body. The V-
axis is taken in the direction of the undeflected boom. The deflection
of the outer section of the boom is defined by the V'-W' axes. The
origin of these axes is fixed to the end of the inner boom section and
the V' axis is taken tangent to the boom at this origin,

3.2.3 Formulation of the Boom Dynamics Equation

3.2.3.1 Approximate Boom Model, == The usual mathematical model
describing the vibrational dynamics of a continuous beam is shown
in figure 2. The internal forces acting upon a deformed element
of length d! consist of moments, axial forces, and shear forces.
The external forces may be considered to be comprised of inertial
forces and externally applied forces. These may be expressed in
terms of convenient components,

The differential equations of dynamic equilibrium are:

9 3 s - (3-1)
Y (TcosfB) + 31 (Ssin B) + Fv(l) - pa, =0
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d d
BT(T sin B) - E(S cosB) + Fo () - pay, = 0 (3-2)

where p is the mass per unit length of the beam, F (/) and Fy(!)
are the components of the external forces per unit length acting on
the element, and a, and a, are the components of the inertial ac-
celeration experienced by the element.

The equation for moment equilibrium neglecting rotary inertia is:

M o, (3-3)

al

These equations can be expressed in finite difference form by divid-
ing the continuous beam into segments of length Al, The following
expressions result (see reference 1):

1 1
7 [Thas 03 By = Tieoyg o8 Beoygl+ 718 0g sin By = S —yg sinFy]

+ Fvak) - pav =0 (3"4)

1 1
7 [T sin Besty = Tty sin Beygl = 77 (Seusg 005 Byt = Sy 08 Byl
+ Fg(l) - Pawk =0 (3-5)

Mg - My
— - Sy = 0 (3-6)

The following substitutions can be made after the above equations
are multiplied by

ka = Al Fw(lk) F

= AlF () (3-8)

Yk

1Witmex', E.A,,H. A, Balmer,)J. W. Leech, and T. H. Pian, Large Dynamic Deformations of Beams, Rings, Plates, and
Shells, AIAA Journal, p. 1848 (1963).
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where m, is an equivalent point mass at the kth station, and ka and

ka are the components of the equivalent external force acting on

the kth mass.

The finite difference equations effectively describe the lumped

mass model of the beam as shown in figure 2, The beam is assumed
to consist of point masses at each station connected by massless
bending sections between each station., The external forces act

only on the point masses, and all bending occurs at these masses.

Equations (3-4) and {3-5) are now written in terms of components
along and normal to the boom at each station. Define the average
slope, B, and the change in slope, A8, , at the kth gtation as
follows:

A

>
-

(Byry + By_y) (3-9)

ABy = Biiy = Bi-y - (3-10)

Then the slope of the k+ % and k- ¥ sections can be written
as follows:

1
Bstp = B + - BBy

By_y = By -_;_ ABy - (3-11)

Since ¥%AB, is small, we may assume s’ A, =1 and
sin 4 AB, = % ABy . The trigonometric functions appearing in
equations (3-4) and (3-5) to a good approximation are:

1
msﬁkt% = oosﬁk ¥ ? Aﬂksinﬁk
- . 1

Using these approximations, the following expressions can be
written from equation (3-4) and (3-5) by multiplying by the appro-
priate trigonometric functions of B, and adding the resulting
equations:

12



1
Tesld = Tt + 5 BBy + Sy)
+ ka cos By + ka sin B
- my (avk cos B + Aa"k sin B) = 0 {3-13)
1 ,
7 8Bk Ty + Ty = gy = Spey)

+ Fw'k cos B - ka éinﬁk

- my (awk cos B, - By, sin Bi) = 0 (3-14)

The two external force terms in each equation (3-13) and (3-14) are
the tangential and normal components, respectively, of the external
force applied to the k th station:

ka cos B + ka sin B A FTk

- ka sin B, + F, cos B A FNk (3-15)

k

Similarly the acceleration terms are the tangential and normal
components of the inertial acceleration of each mass:

a, cos B + %, sin B A 1,

k
- avk sin B + awk cos B 4 aNk (3-16)
so that equations (3-13) and {(3~14) become:
1 -
Ty — Ty + Iy ABy (S 14+ S 1) + FTk ~mg 8T, -0 (3-17)
1 ) ‘ .
‘; ABk (Tk.'.%'l' Tk_%)— (Sk+% - Sk_%) + FNk - lnk aNk = 0 (3 18)

13



From equation (3-6) we can write:

1
Skl — Spy = H(Mk+1 -2M, + M _p. (3-19)
The moment at the kth section is proportional to the change in

slope, Aﬂk:

El -
M = 57 BBy (3-20)

Substituting equations (3-19) and (3-20) into (3-18) gives:

1 EI
? 'Aﬁk (Tk+% + Tk—%) - A_lz (Aﬁk+1 - ZAﬁk + Aﬁk—l)
+ FNk - mk aNk =0 (3-21)

The term in equation (3-21) involving the tension can be neglected
if:
EI

Ty << 2 — (3-22)
a2

where T, is the average tension force at the kth element:

1
Tk = “2' (Tk+% + Tk-—%) . : (3-'23)

The tension iorce can be evaluated using equation (3-17), However,
for simplicity we will compute the maximum tensile force which
exists in a straight vertical beam in the gravity gradient field.

The differential tensile force over an element of length dz which
is a distance z from the central body is:

daT = 302 zpdz (3-24)

where { is the orbital rate. The maximum tensile force then exists
at the root and is:

L
T = / 302p2dz =%92 pL2 (3-25)

(]

where L is the total length of the boom,

14



Substituting in the following values:

Q = 4,58 x 10-4 gec-1

P 4.82 x 10-4 slug/ft

L

750 ft

El = 13,85 lbft2

Al = 93,7 ft

gives
T = 8,56x 10-51band
2EI
— = 3,15 % 10=3 1b,
AR

s

Hence by the condition given in equation (3-22), the tensile forces
can be neglected in equation {3-21), and it becomes:

ElI V
FNk - ZZ.Z. (Aﬁk+1 - Z‘Aﬁk+ Apk—l) = mkSNk (3'26)

The coordinate systems which have been used to define the location
of each mass are shown in detail in figure 3. Eight mass elements
are used for each boom. The first four are defined with the V-W
axes and the outer four with the V'-W! axes., The origin of the
Vi-W'! axes is fixed to the mass element at the fourth station from
the central body, and the V' axis has the same slope as the section
between stations 3 and 4 as shown.

To simplify the problem so that it can be handled by the analog
facility, the normal force component (FNg) and the shear forces

acting on the kth mags are in the direction of the Waxis for elements
1 through 4, and in the direction of the W' axis for elements 5
through 8, The coordinate of each mass element location in the
direction of the V or V' axes, as appropriate, is constant for the
extended boom so that motion of any mass element is always per-
pendicular to the corresponding baseline.

The following applies to each baseline. The slope of the k + %
section is:

1
Beskt = 37 (k1 = %) (3-27)

15
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The change in slope at the kth station is:

1
Aﬁk =A ﬁk-b% - ﬁk—% = "A-T (Wk+1 b Zwk + Wk__l) . (3'28)

Differentiating this twice gives:

ALABy = Sy, - 2W, + Wp_g - (3-29)

It remains now only to relate the acceleration with respect to in-
ertial space to the w's. This is done in the next section.

3.2.3.2 Derivation of Linear Acceleration1n Boom Coordinates. -~

The analysis of two coordinate systems in simultaneous translation
and rotation relative to each other has been treated in reference 2.
Consider an inertial coordinate system with its center fixed to the
center of the Earth, The center of mass of the satellite is defined
by the vector h which originates from the center of the Earth., Let
T be a vector from the satellite center of mass to a mass element
on one boom.

The element can also be defined by a location vector R from the
center of the Earth so that:

R=nh+r. (3-30)
a?R
The inertial acceleration of the mass element, 5, can be ex-
pressed as follows (reference 2): de
25 *2— * e 5 2y

d“R d dT dw d“h

_— = t+v7x(v7'x'r)+2§>< 4 om— X+ (3-31)

de? de? de de de

® *7)

where — and
k de

> denote the first and second derivatives with re-
de

spect to the satellite coordinate system with origin at the center
of mass, and w is the angular velocity of the satellite coordinate
system with respect to the Earth-centered inertial frame.

It is convenient to define, in addition, a local, non-rotating coor-
dinate system which has its origin fixed to the center of mass of
the satellite and whose axes remain parallel to the Earth-centered
inertial axes. In this manner we can consider external forces on
each mass element which are due only to the gravity gradient.

ZSymon, K. R., Mechani¢s, Second Edition (Addison-Wesley Publishing Co., Inc., Reading, Massachusetts, 1960) p. 277,
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Since we are considering a circular orbit, the vector h has a con-
stant magnitude and rotates in the orbital plane at the constant
rate Q; hence:

a&2h

=0 x@xh=-]02%h (3-32)
dt2
This term is the centripetal acceleration of the mass center, which
equals the gravitational acceleration at the mass center in the
equation of motion, The term does not appear in the acceleration
-as expressed in the safellite coordinate frame described above.

Let 3, be the "inertial'' acceleration of the kth mass element in the
local non-rotating frame. Then, from equation (3-31),

L) * -

d d d

o ?k—lalz'r'k+ ZBX-—d: f + -d—;x T {(3~33)

k=

Referring to figure 3, these equations may be expressed for each
baseline. Note that for baseline 0, the component of the accelera-
tion in the direction of W is used; for baseline 1, the component

in the direction of W' is used. For convenience, the differential
centnpetal acceleration due to orbital rate, e.g., ) x(ﬂxtk)

-1012 T » will be subtracted out from the right hand sides of these
equations and reinserted later in the left hand sides as a differential
centrifugal force (see section 3.3.2.4), The normal components

of the acceleration, now minus the differential centripetal term,

are denoted by 2N,

a, For baseline 0 (V-W axes):
3] = ¢+0Q ' (3-34)
N, = W = ($2+ 24 wp+ 2B+ D) Y + by (k = 1,2,3,4)
b. For baseline 1 (V'-W!' axes):

Let
Tk = ?4 + tT" (3-35)
Then using an operation similar to that defined in equation
(3-31):
d4*? T d,nz dtt
= g + @ x @ x7[) + 28" x T
dtZ dtz dt
d‘ — d#z
T Ty (3-36)
dt dt2

18



where the double asterisk denotes differentiation with respect
to the V'-W! axes. &~ is the angular rate of the V'-W' coor-
dinate axes with respect to the V-W axes.

Algo from reference 2:

*

dfR g4 o o, dEy (3-37)
dt de de

Substituting (3-36) into (3-37) into (3-33) and noting that &"=
B; s gives:

ay, = Wi + g - (G404 B3 97 - 01w
- ((;52 +24Q) (wg = vq sin B3 )

+ 2(<;S+Q+Bs.5)§7{‘
+ 2(+ Q) (34— Wy sin B3 s)

+ (d+ 33.5) i + ¢ (vgq + wy sin ﬂ3.5)
(k = 5: 6) 7, 8) (3"'38)

where the approximation cos ﬁs_i= 1 has been made, and
t

vp are the coordinates of the k*h mass element with respect

to the V'-W! axes.
From equation (3-29):
AlA.ﬁ'k = %ﬁk“ -_— Z.V;k + ‘V.lk_l

lag, 1+ (2 + ZéSQ)wk_,,l - 2(¢+ ) kel = és.vk-o-l]

]

2[ay +(¢2+ 26@) wp -~ 2(d+ W ¥, - gw ).

+

[ak_l + (¢-’2 + 2(50) wk__l - 2(& + ﬂ) .v.k-l bt :ﬁ;vk_ll
= ak+1 bd Zak + ak__l - $(vk+1 d 2vk + vk—l)

+ (&2 + 2%9) (wk-i-l - 2wk + Wk_l)
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Since we have Vel = % Al , and V-1 = v - AL, then:

Viel = 2Vt k-1 = 0

and

Vel — 29 t W = ey = 28 vy

+($2+ Zq'Sﬂ) (o1 = 2w + Wi p) (3-39)
Similarly for the other baseline, this procedure results in:

Wiel = 2V + Wy o= oap g - 2ap
+ [(¢ + 0+ ﬁ'3;5)2 -0?] (wgo1 = 2w + wi_ ) (3-40)

Inboth equations (3-39) and (3-40), the centripetal acceleration
terms arising from boom curvature cannot be simulated with
the present analog capability and are neglected. Referring
back to equations (3-34) and (3-38), one can see that these
terms must be small relative to aN, for the simplification to
be valid. ay, includes the differential gravity and centrifugal
accelerations described in section 3.3,2.4, and is usually
large compared to the neglected terms., The exceptional cases
are those which involve large boom deflections occurring
simultaneously with large librations approaching tumbling.
For these cases, the analog output parameters may be inspected
to determine the relative magnitudes of the neglected terms
and the associated degree of inaccuracy. Eliminating the
terms in question reduces both equation (3-39) and (3-40) to

iik_'_l— 2'&k+%§k_1=ak+1-23k+ak_1 (3-41)
This equation holds for both baselines.

Equation (3-41) implies that we can obtain the deflection, w; ,
from the moving boom coordinate axes using the "inertial' ac-
celeration, a, , by neglecting the fact that the coordinate sys-~
tem is moving with respect to inertial space at all. In fact,
except for the requirement to switch in sections sequentially,
the model holds even during deployment of the booms with no
modification. However, care must be taken to obtain the cor-
rect boom end conditions,

20



3.2.4 Boom Deployment Model

3.2.4.1 Description of Boom Deployment Scheme. -- For the simula-
tion of deployment, the boom is assumed initially to be extended
backward; however, the undeployed portion of the boom is assumed
to have no mass and no deflection. The position of all of the ele-
ments during deployment is shown in figure 4. Although the unde-
ployed section of the boom has no mass, the acceleration for each
position still exists:

af = 23+ Wi+ $g G = 0) : (3-42)

When this acceleration is integrated, the instantaneous velocity

(u,) with respect to inertial space is obtaine< for each station along
the undeployed boom. During deployment each , varies continuously
from an initial negative value to its final positive value for the fully
extended boom condition,

The following steps are made to introduce each boom section, as
it is deployed, into the simulation:

a. All torques and forces are applied to the section, but de-
flection is not allowed during the period in which 0 < g < 3 Alf2
b. While 0< f < 3Al/2, the mass of the section is added to
the central body as an effective increase in moment of inertia.

c. When a mass reaches r, = 3Al2, it is allowed to deflect
by closing the acceleration loop (Fy, = myay).. This allows
bending to occur at any mass element that has reached or
passed the station Al/2.

d. Simultaneously, the moments acting on the central body
from the deploying boom are switched from the section that
has reached r, = 3A!/2 to the next one (which has no deflection)
at ¢ _, = 1/2AL. ,

In following subsections the length of each boom segment
will be denoted by ! rather than Al for convenience. ’

3.2.4.2 Moments Acting on Central Body durin&mplomenf of One
Section (1/2! < r, < 3i/2).-- As shown in figure 5, the equation
of motion for the central body if there were only one antenna is:

(Iv+mr3)q.5. + 2mtnf(q§+ﬂ)=—Mn+Sn+% + Nprp (3-43)
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1
bue: S .1 = ‘T(Mn"Mm-l) (3 -44)

. 2 . ., tn 'n
..(Iv+mrn)¢+2mrnr(¢+ﬂ)=-— l+—'l M“+—l Mo 1+ 5Ny
(3-45)

For the simulation where two boom pairs are simulated, the equa-
tion of motion for the central body is:

(Iv+'4mxg) ¢+ 8mrnt(9§+ﬂ) = = 2(Mp,+ Mgy,

Zrn -
- "l—"' (M1n+ Mzn)

Zra
* = Mg+ Mo 1)

- 21y Ny + Nop) (3-46)

3,2.4.3 Boom End Conditions. -- The torques acting on the central
body define the deployed boom end conditions at the central body.
There still remain end conditions at the free end of the deployed
boom and the''free' end of the undeployed boom section, First,
the free end of the deployed boom section is defined by the follow-
ing expression: S

For the free end of the undeployed section (k = 1) several param-
-eters have to be evaluated. The general boom bending equation

states:
. El '
Mk = "‘? (uk_l - Zuk + uk+1) . (3'48)
3

The known values at the end (k = 1) are u; and uj while y,_; can
be expressed as follows:

W1 = 9.5‘1:—1 + (p+Q0)¢ (3-49)

$r_y= bl =D, (3-50)
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RS ST

Thus:

uk__l = uk~!$. (3"51)

Therefore the end condition for the undepioyed boom is defined by:

=-

1= E‘;(U2—ul—l¢: ). (3‘52)
l

3.3 ANALOG SIMULATION

3.3.1 Simulation Block Diagram, ~-- A simulation block diegram including
the deployment simulation and central body control torque addition is
shown in figure 6. The most critical block in the program is the Boom
Bending Simulation, This block simulates two booms, each consisting
of eight discrete mass elements equally spaced along the length of the
boom, The deflections of the masses in each boom are defined with
respect to two baselines, one attached to the central body and the other
passing through two adjacent masses near the center of the boom. The
linear velocity of each mass with respect to the local rotating frame
and the boom root torgue at the central body junction are computed in
this block,

The components of the external forces acting on each mass in the
boom normal to the respective baselines are computed in the External
Force Simulation block. The attitude of the central body with respect
to the local vertical axis is computed in the Central Body Dynamics
block. The Mass Element Location block involves a large number of
trigonometric computations to locate each mass element in the local
rotating (x-z) coordinate system. The gravity gradient force on any
mass is proportional to the distance of that mass from the local hori-
zontal axis., Lastly, a Visual Display technique has been developed,
Points corresponding to each mass are displayed on an oscilloscope so
that a motion picture output of the boom motion can be obtained for both
the deployment and the extended boom cases.

3.3.2 Typical Analog Circuits. -~ The following pages show typical analog
simulation circuits,

3.3.2.1 Boom Bending Simulation, -- An analog circuit for three sec-
tions of a boom is shown in figure 7. The equations simulated in
figure 7 are:

1. EI
- My; = = (wyg=2uyy + u16) (3-54)
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1 . El :
l. M16 = ;; (u17-2u16 + uls) (3-55)
' 1

1

1 . :
ma16 = T (Mls - 2M16 + M17)+N16 (3-58)
wig =l8B17 + 2wyy ~ wig (3-59)
wi7 =8B + 2wi6 ~ w5 (3-60)
W16 =l’ABlS + 2W15 - W14 (3-61)

3.3.2.2 Central Body Dynamics. -- The simulation equations for the
extended boom central body dynamics are:

M, = -z- My + My - _21_ My + Myy) + % (Nyp + Ngyjp) (3-62)
"'Iv =M, (3-63)
sin Ty = /qé cos Tyg de (3-64)
cos Ty = = f$ sin Ty de (3-65)

The corresponding circuit is shown in figure 8.

3.3.2.3 Mass Element Location, -- The location (x50 zy ) of the ith
mass element of the i th boom (i= 1, 2), can be written in terms of
w, I' andr . Deflections wy of the inner four elements ( 1< k < 4)
are defined relative to a. baseline 0 along the undeformed boom
axis; deflections i of the outer four elements (5 < k <8) are de-
fined relative to a baseline 1 tangent to the deformed boom at
stationk = 3.5.
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Baseline 0 (1 < k <4):

x = g sinl) + wik cos I}, (3-66)

zy = goosTyy — wy sin T, (3-67)

Baseline 1 (5 < k < 8):

xjp = g sinTy; - 14 BiS.S cos I,
+ wipcosTy; + wygcosTyy (3-68)

tk oS Fil + f4 Bi 3.5 sin Fio

N
-
"

[}

W;k sin l"l - Wi4 sin Fio (3-69)

where the angle I, is determined from the relations
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sinl) = sin[ ) + By3 5008l {(3-70)

cosT;; = cosT;y — B;3.5sinly, (3-71)

and B;35 is the slope of the ith boom just inside {towards the central
hub) the k= 4 mass element:

1
Bis.s = 7 (Wig—¥i3). (3-72)

A typical circuit is shown in figure 9.

3.3.2.4 Normal Gravity Gradient Force, -~ The sum of the differential
gravity force and the differential centrifugal force (due to the orbital
rates, as discussed in section 3, 2. 3, 2) on the kth mass element
can be written as:

fGGk == 39:2 mkzk (3-73)
where Q is the constant angular rate of the circular orbit, and
fGGk is directed parallel to the local vertical. The component of

fcG, normal to the baseline from which deflections of m; are meas-
ured is:

Neg, = ~ fog, o T (3-74)
For baseline 0 elements (1 <k < 4):

NGGik = - 302 my Zy sin 'Fio' (3'75)
For baseline 1 elements (5 < k < 8):

NéGik = 392 mi‘ zik sin I"il . (3-76)
\;vhere, again, i ‘is the boom index, 1 or 2,

A typical circuit is shown in figure 10.
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Figure 9 MASS ELEMENT LOCATION SIMULATION
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Figure 10 NORMAL GRAVITY GRADIENT FORCE SIMULATION

3.3.3 Deployment Simulation. -- The following modifications of the boom
simulation are required to accomplish deployment:

a. The section switching of the boom simulation is accomplished
by opening the section loops and adding the acceleration (a') needed
before deployment. The pertinent analog circuit is shown in figure
11.

b. The time-varying 5, term is generated with an integrator
which simulates mass element 1 location. At t = 0 the integrator
locates mass element 1 at r; = =15 I/2, During deployment the

ry; value changes with r from -15 [/2 to + [/2., Other mass element
locations are generated from the constant mass element spacing
('k+'1 =1 +1). The time-varying r, is used to switch the boom
sections with biased operational relays (see figure 15).

c. Acceleration terms required for sections before deployment
must be generated. A typical circuit is shown in figure 12,

~d. The central body dynamics are modified to include a time-~
varying g and to switch the takeoff point for the end moments of
the boom from section to section. These end moments are derived
and summed for each section and switched into central body dynamics
at the appropriate time during which I/2 < < 31//2. Typical

analog circuits are shown in figures 13, 14 and 15,
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3.3.4 Internal Boom Damping Simulation. -- Linear internal boom damping
can be simulated if care is exercised in applying the damping term so
that only boom oscillations are reduced but not central body libration.
For the extended boom simulation, let

where ¥, = u, - dn and A is the internal boom damping factor. (3-78)

Since the simulation of the booms does not produce ¥, explicitly, equa-
tion (3-65) must be used for each boom section damping simulation,
Non-linear boom damping can be added similarly if the non-linear com-
ponent parameivrs are known,

3.3.5 Central Body Control System Simulation, -- A central body control
system can easily be added to the present simulation. The control sys-
tem applies central body torques which are a function of the central
body angle and its derivatives,

A very simple control system was added to the extended boom simula-
tion, The control torque acting on the central body consisted of propor-
tional rate damping.

T, = -.Ké. (3-79)
This addition demonstrated that central body damping is feasible. More
elaborate control systems will be added to the simulation in a similar
fashion later in the dynamics study.

3.3.6 Visual Display. -~ A visual display technique has been developed in
which a commutator is used to sample the two components of each mass
location in a sequential manner and apply the pulses obtained simul-
taneously to the vertical and horizontal deflection inputs of an oscillo-
scope. A visual, motion-picture type display is produced. Additional
displays, useful in interpreting and reducing the data, can also be in-
troduced with the commutator. In particular, an orbit location indicator
showing the satellite position in orbit has been added to the display.

To locate the central body in the center of the visual display, an offset
voltage is needed to displace the origin of the x, z axes:

=k G - v"‘“) (3-80)
X X 2

Vmax
z =k, (vz -5 ) {(3-81)

36



Vmax 18 the maximum commutator voltage (4 volts). Also, the orbital
location indicator is effected with an oscillator:

X = kg sin Q¢ + y) (3-82)

= <k, cos (Qt+y,) {3-83)

where X and Z are satellite positional coordinates in its orbit, and y
defines the starting point,

A sequence of six photogr>phs of the oscilloscope display is given in

figure 16 for a deployment-excited oscillation resulting from deployment
at the rate of 1 ft/sec.
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(1) DURING DEPLOYMENT (2) T = 3000 SEC.

(3) T = 4000 SEC. (4) T = 4500 SEC.

(5) T = 7500 SEC. o (6) T = 10,500 SEC.

Figure 16 DEPLOYMENT EXCITED OSCILLATION (¢ = 1 ft/sec)
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4,

4.1

RIGID-BODY SIMULA TION

INTRODUCTION. -- The complexity of the flexible body dynamics problem

~ makes it desirable to attempt to categorize the various observed effects

as to whether they are principally due to rigid body motion or beam
dynamics, This task can be accomplished by comparing the results ob-
tained using a rigid body with those obtained using a flexible body. Although
it will be possible to run the flexible body program as a rigid body, it was
felt that it would be desirable also to develop a separate rigid-body pro-
gram for the following reasons:

" a. The approach used to develop the appropriate equations for the
rigid-body program is completely independent of that used for the
flexible-body program, thus providing an independent check for those
cases for which an analytical solution cannot be developed.

b. The rigid-body program could be developed more quickly than the
flexible-body program since a considerable portion of the program had
been previously developed on other projects. This allowed experi-
mentation with various techniques which would later be incorporated
into the flexible body program on an €arlier time schedule,

c. The rigid-body program can provide check cases for both the
analog and digital flexible-body programs more economically than
the flexible-body program used to generate rigid-body motion.

In the analysis of rigid-body motion, it is necessary to express the motion
relative to some frame of reference. The specific problem for the RAE
dynamics study consists of expressing the rotary motion of a satellite
body-fixed frame with respect to an inertial frame. The rotational form
of Newton's second law (piﬁcz M.' ) together with the required initial con-
ditions will then allow us to express the motion as a set of time-dependent
differential equations. '

The angular momentum H, of the body about its center of mass can be ex-
pressed in terms of the inertia tensor Iand the angular rate W;, of the body
with respect to inertial space (H, = 1 ¥ ). Since the inertia tensor Iis a
real, symmetric matrix, a transformation of axes that will diagonalize the
matrix always exists., The body-fixed frame which produces a diagonal
matrix is generally called the principal axes set and is used in this study
since the body.geometry can be conveniently expressed in this frame, and
the elimination of the product-pf-inertia terms results in some useful
simplification.

. )
Where p; tepresents the time derivative d/dt taken with respect to inertial spnce,:'-l-'lcf is the angular momentum about the
center of mass, and Mc is the sum of the moments about the centet of mass.
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The two principal frames therefore will be the inertial frame and the body -~
fixed, principa.l-axes frame. Let us now define a transformation matrix C
such that ( \7) = C{ v)b where (V) is an arbitrary vector coordinatized in
the inertial frame and (V)b is the same vector coordinatized in the body
frame. The time dependence of the transformation matrix C can be ex-
pressed as p, C= cv, ib » The solution to the rigid body problem can now be
described as the solution of the two matrix differential equations p; (I be )=
M, and p;C = wab coordinatized in 2 suitable frame (either body or inertial),
To solve these equations, three general areas must be examined: (1) the
choice of coordinate transformation method, and (2) the technique used to
generate the body's translational motion information (vehicle ephemer1s
data) needed for (3) the generation of the external moments,

COORDINATE TRANSFORMATION METHODS. -- Thereare four main methods
for transforming between two right-handed orthogonal coordinate sys-
tems. Euler angles are probably the most commonly used technique,
There are two distinct types of Euler angle rotations: the normal Euler
angles are characterized by a rotation about an original axis, followed
by a rotation about some new axes, followed by a rotation about the
carried direction of the original axis (example 3-1' -3'); modified Euler
angles are defined by sequential rotations about three different axes
(example 1-2' =3'")., The entire set of 12 possible rotations can be
generated by merely relabeling these two types. The transformation
matrices relating coordinates and their angular velocity are now given,

Normal Euler Angles

Let

cos ¢ sin ¢ 0

® = —sin ¢ cos ¢ 0
0 ] 1
1 0 0

6 = 0 cos § sin 6
0 —~sin 6 cos ¢
cos ) sin ¢ 0

vy = -siny  cosy 0
0 0 1
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Then

x b S
}" = Y90 y
z’ Zz
Wy’ 0 0 0
@y ¢ = P60 0 + P 0 + 0
@y’ ¢ 0 ¥
“Modified Euler Angles
Let
cosy 0 - siny
T = 0 1 o0
sin -y 0 cos y
then
x’ x
y' = 976 y
z’ z
0y’ 6 0\ /o0
wy, i = ¥r 0 + ¥ y1+ 0
Dy’ 0 0 \b

Cayley-Klein parameters use complex numbers to generate the trans-
formation matrices. Four parameters are used, arrayed in a matrix

a
Q= (ﬁ 8}') where Q is required to be unitary and the determinant of Q

equal to +1. Now if we let P = (,% *77) and P= QPQ”, then,since P
is hermitian (P = PT), P’ is also hermitian and |P’| = |P| and the trans-

formation is orthogonal.

Cayley-Klein Parameters

x’ %(az-y2+82—,ﬁz) %i(}’z'az+82"ﬁ2) 'ya‘aﬁ x
v | =l %i@2+/2-g2-8) %@?+y2+B2+8H  -ilaf+yd y
z’ B&-—-ay itay - B3 ad+ By z
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Wy Ba-af+y8-5y

]

)

]
~

88-Bb+ya—ay
w, - By -yB+ab-da

The general rotation of a body can be considered to be a rotation through
an angle A about a vector W. A quaternion is a set of four real numbers.

The first component q; can be geometrically interpreted in terms of the

rotation angle A [q; = cosA/2] . The other three components, -- q;,

92 » and q3 -- can be interpreted as the components of the rotation
vector W[W=Tq + jgp+ kqz] . Euler parameters and the Gibbs vector
differ from quaternions essentially only in terminology. The Gibbs
vector is the W vector but with magnitude equal to the angle of rotation A,

while Euler paramcters are just twice the quaternion components.

Quaternions

' (af + 9 - %

X 90 + 9] 9192+ 9093 9193 — 9092 X

T ]=2 - 7+ af) - %

y 9192 = 993 (99 + 93 9293 + 99 9 y
2’/ - ( 2 2 -y

9193+ 9992 92493 — 909 % +93 z

@y’ —q390 + 9091 + 9392 — 9293
@y =21 9% -BU*t 02t uds
@y 9399 + 929 — 9192 + 9 93

Direction cosines form the most direct method of transformation. Each
of the prime coordinates has three components when coordinatized in the
original frame. These nine components are the direction cosines and
completely specify the transformation.

Direction Cosines

x’ i i) ik x
v | —’:,,*i ')‘; Ji"di‘ y
i i ok ko z
Wy 321 331 + d'zz."’sz + "’23 ‘*.33
oy | = | dspdyp + dspdpp + dizdyg
W, 311 d'21 + d‘12 d.zz + d.13 <i23
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4.3

Euler angles and the Gibbs vector are subject to singularities since
the rotation is specified by only three quantities. In addition, Euler
angles introduce the computation of trigonometric functions in the
determination of derivatives. The singularities impose difficulties
when it is necessary to allow complete freedom about all three axes,
while the necessary algorithms for the trigonometric functions can
introduce considerable additional error in the derivative computations.
Cayley-Klein parameters require the additional complication of com-
plex number arithmetic. For these reasons, Euler angles, the Gibbs
vector, and Cayley-Klein parameters are not further considered,

The choice between direction cosines and quaternions (where Euler
parameters are considered as a form of the quaternions) cannot be
made so readily., Both methods enjoy an absence of singularities and
a meaningful physical interpretation.

ERROR PROPAGATION, -- Since more than three equations are being
integrated, the additional information can be used in conjunction with
constraint equations to reduce the error under certain conditions, Act-

“ually five different schemes using direction cosines or quaternions have

been programmed and briefly examined. These schemes are integration
of: (a) direction cosines with no correction, (b) nine direction cosines
normalized by row after each integration step, (c) six direction cosines
using three constraint equations to generate the additional three elements,
(d) four quaternion components with no correction, and (e) four normal-
ized quaternion components, A preliminary investigation was conducted
to determine the relative advantages of these five schemes. The test
case selected to evaluate the schemes consists of a constant rate skewed
with respect to the principal body axes so that each axis sees the same
rate. The body was assumed to have equal principal moments of inertia.

No external moments were applied to the body. Thus the rate should
remain constant and a simple analytic solution could be used to verify
the accuracy of the integration.

A measure of the accuracy, suggested by Dr. Wallace Vander Velde, is
generated by the following technique. Let the subscripts I and B denote
the inertial and body axes, respectively, while the subscripts Mand T

‘denote measured and true values. The transformation matrix can be

defined by the equation Vi = CBIVB where V is an arbitrary vector and

C is the matrix of direction cosines. Now Vrr = Cprr Vprand VIM

CpiM V1. There exists a transformation between Vit and VIM such that
Vit = CERRVIM ; it can be shown that this transformation is Cggp =

CpiM Cprr~!. If the error matrix Cppp represents a small angle trans-
formation, it is approximately of the form:
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CErr =| -43 1 A
Ay -Ap 1
where A; is the ith component of the vector rotation carrying the
frame into the I frame. (The order of rotation makes no difference
since the rotations are considered to be small.) The rotation angle A
where A = (4 b‘ii A; )1/2 is used as an approximate measure of the
error. Two classes of errors appear to be present. The IBM 7094
truncates the results of multiplication operations to maintain a speci-
fied number of significant figures. The truncation takes place on the
absolute value of the product. The effect is to cause the rotation angle
error to grow as a function of the number of integrations (as opposed
to the function growing as the square root of the number of integrations
for the case of machine round-off). The error should also grow as a
function of the number of multiplications involved in the evaluation of
the derivative and computation of the integrand. Thus the error angle
A should have the form, A = f(m)En , where n is the number of integra-
tions, E is the average value of the truncation error per multiplication,
and f(m) is a function of the number of multiplications. The average
truncation error should be about 3.7 x 10~9 (1/2 x 2-27 binary) when
considered for either direction cosines or quaternions (maximum value
of 1), Referring to figure 17, it will be noted that the error angles
associated with the unnormalized direction cosines and the unnormalized
quaternions are linear functions of the number of integration steps.
Using the values plotted in the figure, f(m) calculated for the quaternions
is ~ 6 while the direction cosines produce a value of f(m) = 4. This
appears to be consistent since there are two additional multiplications
in the computation of the quaternion derivatives.

The second class of error can be categorized as scheme error. Two
types of scheme error are present: the error associated with the inte-
gration scheme and the error associated with the normalization scheme.
Referring again to figure 17, it will be observed that the normalization
apparently introduces a systematic error which eventually dominates

the significant figure truncation error., Thus it would appear that
normalization with its additional computational requirements is gen-
erally not a desirable feature. Figures 18 and 19 show the error angle
plotted as a function of the number of revolutions of the body with re~
spect to inertial space. Low amplitude oscillations of approximately

the orbital frequency will be observed, particularly with the quaternions,
This error can probably be associated with the integration scheme. The
problem here is a matter of attempting to fit a basically sinusoidal func-
tion (the quaternion derivatives) with a cubic (the interpolator and extrapo-
lator of the ADMS4 routine).
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From these preliminary results, it would appear that unnormalized
quaternions are the most advantageous method of generating the trans-
formation matrix since they produce the least error with the fewest
integration steps. It would also appear that relaxing the integration
bounds and thus increasing the integration scheme error would be
beneficial since the significant-figure truncation error would be re-
duced by the reduction in the number of integration steps; at the same
time, the running time would be decreased. Further investigation of
these areas will be undertaken in Phase B. Additionally, the possible
merits of Runge-Kutta will be investigated.

VEHICLE EPHEMERIS GENERATION TECHNIQUES, -- A completely gen-
eral rigid-body simulation would of necessity include coupled differen-
tial equations for both the translational and rotary degrees of freedom.
Thus the vehicle's position, velocity, and acceleration would influence
the rotational behavior of the vehicle (example: the vehicle position
influences the computation of the gravity-gradient moment), while the
vehicle's orientational state introduces similar perturbations to the
translational state (example: the acceleration of the center of mass
caused by solar radiation pressure is a function of the vehicle's orienta-
tion with respect to the Sun). In the interest of somewhat simplifying a
rather complex problem (considerably more complex when the addi-
tional degrees of freedom associated with the flexible beams are intro-
duced), it was assumed that the coupling was not complete; specifically,
that the only coupling involved the effect of the translational state on

the rotary state and that the rotary state did not significantly affect the
translational state. This simplification implﬁg-that translational effects
that normally include both orientation-dependent terms and other terms
which are not dependent upon orientation can now be simulated only as
functions of the orientation-independent terms. Thus the average
acceleration due to solar pressure can be accounted for, but the
immediate change in acceleration due to the changing cross-sectional
area and aspect angle cannot.

This simplification now allows the generation of the vehicle's transla-
tional motion (vehicle ephemeris) entirely independent of {(and com-
pletely separate from, if it proves desirable) the vehicle's rotary
motion. Two methods for generating the necessary data have been
developed., The first method, called the analytical ephemeris, uses
a simple conical representation of the orbit. The vehicle's initial
position and velocity are used in conjunction with Kepler's equa-
tion to provide instantaneous position and velocity, The orbit

is assumed to be fixed in inertial space and therefore accelera-
tion terms attributable to the actual rotation of the orbital frame
with respect to inertial space have been neglected. The computation
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for the direction of the Sun includes aterm accounting for the rotation
of the orbital frame with respect to inertial space caused by the oblate-
ness perturbation in addition to the diurnal motion. Thus the correct
geo.netry is maintained. A solar illumination factor (fraction of the
solar disc visible) is also computed as a function of the vehicle's in-
stantaneous position relative to the Earth and Sun.

A more complete (but also more costly in terms of machine time)
option is also provided in the program. The computed ephemeris
allows the computation of position and velocity to be performed by a
completely independent program and then to be transferred to the
rotary dynamics program using a binary magnetic tape. Presently
an N-body variation nf-parameters program (1546) is being used to
generate the necessary information, but any orbital program can be
used for this purpose provided that it is suitably modified to write the
required tape. The presently used program allows a variety of per-
turbations including gravitational perturbations caused by other (up
to 11) planetary bodies (using JPL ephemeris data), solar radiation
pressure, atmospheric drag, and oblateness (including triaxiality)
perturbations.

RIGID BODY MOMENTS, -- The gravity-gradient moment is of course
the principal forcing function with which we are concerned, and at the
present time it is the only type of external moment programmed and
available for use with the rigid-body program., The gravitational
force at any point i on the rigid body is given by F1 » where

3. MAER;

R3
1

and

B
]

the mass of the i point on the body

#g =  the gravitational parameter of the Earth
R; = the vector from the center of the Earth to the i" body
point,

The torque contribution ’T of the i mass point about the center of
mass of the RAE conﬁguratmn due to this gravitational force F; is
given by T = 2, x F; where Z is the vector from the center of mass
of the satellite to the ith pomt. Summing the individual torques over
all the i mass points, we obtain the total torque T for one pair of
diametrically opposed antennas:
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L
.. Z;dz;
T=kpgpR, sinf
R}

~L
where

p = the linear mass density of the antenna

R, = the distance from the center of the Earth to the center of
mass of the satellite

® = the angle between the local vertical and the antenna axis

- -»> -> .

z; = Z;1z where 1, is the unit vector in the direction of the
antenna

i &, 1,

k = ~———— where k is the unit vector normal to the antenna-
[Rox 1|

local vertical plane

L = the antenna length measured from the center of the
satellite.

Evaluation of this integral gives:

- LE pL3
T = = ksin20.
R3
Only one term of a binomial expansion of the gravity expression was
utilized in the evaluation of the torque integral since it was found that
the symmetry of the RAE configuration resulted in only even terms in
the expansion, The torque contributed by two pair of diametrically

3
- pgPL” |
opposed antennas is of course givenby T; , = -—3——-—- k (sin 261 + sin 26,).

The problem of introducing libration damping by means of an additional
rigid body coupled to the first by means of a torsion spring and magnetic
hysteresis damper has also been investigated and programmed. It has
not been completely debugged at this point, however. The technique
employed in incorporating this additional body consists of adding a
series of subroutines that are essentially duplicates of those used for
the satellite vehicle itself. The moment summation block is modified

to include the reactive torque of one body on the other caused by the
spring and damper,

A detailed description of the various subroutines including the equations
which have been programmed is included in appendix C.
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5.1

FLEXIBLE BODY SIMULA TION

INTRODUCTION. -- The equations of motion describing the dynamic be~
havior of the RAE satellite during both the deployment and operational

phases of the mission are developed in the following paragraphs. The

basic approach used in the derivation is to apply LaGrange's equation to
suitably constructed dynamic system functions. The application of LaGrange's
equation requires the description of the position of a point on the satellite

in terms of a set of coordinates, » depending on time only. The coor~
dinates used to describe the position of a point on the satellite are

a. Three Cartesian coordinates to locate the C. M. of the central core
of the satellite relative to the center of the Earth

b. Three angles to orient the undeformed geometry of the satellite
with respect to the non-rotating Earth Cartesian coordinate system

c. The amplitudes of a set of shape functions used to describe the
position of a point on the antenna relative to its undeformed rigid body
position.

The kinetic energy of the system is obtained by writing the kinetic energy
of an element of mass at a general point on the satellite and then integrating
over all points of the satellite. The velocity components of a general point
on the satellite are obtained by differentiation of the position components

in the fixed reference frame with respect to time. The generalized forces
for LaGrange's equation are obtained by evaluating the work done by all
forces in a virtual displacement of each coordinate 9p » The external
forces considered are the Earth's gravitation and the radiation pressure

of the sun. The internal forces considered are the effects of strain energy
due to deformation of the antenna and temperature gradients in the antennas
due to solar radiation. :

Several assumptions are made in the development of the equations of motion.
These assumptions are listed below.

a. The central core of the satellite is rigid.

b. The behavior of an antenna can be represented by a series expan-
gion in terms of the small-displacement mode shapes with timewarying
amplitudes.

¢, Strains on the axis of an antenna are negligible in all respects.

d. The contribution of twisting motions of the antenna to the kinetic
energy are negligible,
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e. There are several assumptions of detail associated with the num-
ber of terms to be retained in various expansions which must be con-
sidered with respect to the particular detail at issue,

5.2 DERIVATION OF EQUATIONS OF MOTION, -- The equations of motion for
the RAE satellite are written by means of LaGrange's equation

_Sl_ (T -V) HT - V) - Q (5-1)
dr dq, | = dq, = °

In this equation T is the kinetic energy of the system, vV is the potential
energy of the system, and Q, is the generalized force associated with the
generalized coordirn=te q; . The superscript dot is used to indicate differ-
entiation with respect to time.

In the application of LaGrange's equation to formulating the equations of
motion of a flexible body, the basic requirement is to express the position
of a point on the deformed body in terms of a set of product functions which
separate time-dependence from space~dependence. In essence, this means
that the deformation of the body is assumed to be represented by a set of
shape functions with time-dependent amplitudes. The set of time-dependent
amplitudes, along with the set of six quantities needed to specify the position
and orientation of a body-fixed reference frame, comprises the set of gen~
eralized coordinates g, for LaGrange's equation.

In the following paragraphs a set of equations describing the dynamic be-
havior of the RAE satellite is derived. The first section develops the
general framework for describing the dynamic behavior of a flexible body.,
The inertial terms (left hand side of equation (5.~1)) are then specialized
for the particular configuration of the RAE satellite. The relative dis-
placements of the antennas, in two perpendicular directions normal to
the undeformed antenna position,are expressed in terms of series expan~
sions using the linear cantilever mode shapes. The axial displacement is
specified in terms of these two series by requiring that the length of the
antenna always be its unstrained length. The effect of axial strain and
torsional rotation on the kinetic energy is neglected. The validity of the
use of small-displacement mode shapes in this manner should be examined
by comparison of this procedure with the solution of appropriately derived
large-deformation beam equations of motion for a simplified dynamic case.

The final two sections are concerned with developing the generalized forces
(right hand sides of equation (5-1)) for the conditions of the RAE satellite.
The external effects of gravity and solar pressure are formulated in the
first section, The internal forces due to strain caused by deformation and
by temperature gradients are treated in the last section.
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5. 2 1 General. -~ The position of a point on the vehicle is written in terms

CENTER OF -~

" of its location relative to the center of the Earth. A set of Cartesian
coordinates X;p is constructed, with origin at the center of the Earth,
and being fixed with respect to time and space. A local Cartesian

‘coordinate system, Xj1, moving with the vehicle, but fixed in orienta-
tion parallel to the Earth-centered system, is taken at the center of
mass of the satellite central hub, Finally, a Cartesian coordinate
system, X;p, fixed to the vehicle and moving with it, is constructed
with origin at the center of mass of the satellite central hub and axes
parallel to the principal axes of inertia of the undeformed vehicle. The
orientation with respect to.the local frame, X;; » is specified by a
matrix of direction cosines. The various coordinate frames are
illustrated in figure 20- :

The position of a point P on the vehicle with respect to the center of the
Earth is given by the following equation. The subscript i indicates the
three Cartesian components.

(X0} = (X0} + [a;] (X5} (5-2)
X3s K31
MASS CENTER
OF CENTRAL CORE
XIL‘&‘_,’ = e X 28
%30 Xis ¢

EARTH , / «
6. LOCAL NON-ROTATING AND

X0

BODY -FIXED COORDINATE FRAMES

b.

X20

EARTH -CENTERED NON -ROTATING
COORDINATE FRAME

83 -0089

Figure 20 REFERENCE COORDINATE SYSTEM
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The direction cosine matrix [a;;] transforms vector components: from
body-fixed coordinates to local non-rotating coordinates:

{XiL; = [ai’-] lXiBl

In terms of the Euler angles ¢, 6 , and ¢, the matrix is
co -S6Ce S65¢
lajl = | Cyso  —SySp + CYcOCH  -SYCo - CYCOss (5-3)
SySe CyYSé + SYCOCe CYCp ~ SYCOSé

The velocity of a point is obtained by differentiation of the components
of position:
{Xio* = {iioL} + [aii],{XiBl + [aii] lxiB} (5-4)

Now the derivative of the transformation can be written as follows., The
instantaneous angular velocities about the three body axes are intro-
duced:

[aij] {XjB} = [aii] {ka Xjp - 9p ka} (5-5)

With this the velocity components can be written:

[Xiol ='“.(ioL! + [aii] {).{)B + wyp xlB - ap ka! (5-6)
Introducing for convenience the parameter
8 = Xjp + ojp Xpp - @4 Xjp - (5-7)
the velocity components become
(5-8)

if{io} ='{).(iol_l + [aii] {siBl - |
The kinetic energy is obtained by the standard relation. Considering
an element of mass, the differential kinetic energy is given by
1
-— . 1T 1% 5«
dT = P) dm {xio"l 1Xio} ( 9)

where Kis the kinetic energy. The velocity-squared term is expanded
as follows:

54



“‘(io}T “&io} “.(ioLlT“.{ioL}

+

2 u.(ioL!T [aii] {8.151

+

15,517 1551 - (5-10)
Note that:
[“ij]T [aii] = 1 (unit matrix)

since[ai.] is an array of direction cosines between two Cartesian frames.
Further expansion of the terms in equation (5-10) yields

XL} T (X1 = "‘1201. + ).(2201. * kgoL (5-11)
2 KXo 1T Lay] t3jp1 = 2 %101, (ayg 81 + ayp S5 + ay3 8351

+ 2 Rpy Tagy By + ag7 Spp + a3 3p]

+ 2%z lag) 81p + agp Sop + 233 8351 (5-12)
{5,p1T 185} = Bop + by + Big (5-13)

To obtain the kinetic energy these expressions are integrated over the
entire body. The integration variables involved are the independent
spatial variables in the body frame. These appear only in the body
system coordinate terms xti and X5 . Note that

81 = X1p + wyp X33 — w3p Xpp

8)p = Xzp + w3g Xjp - w1p X3p

835 = X3p + o1 Xpp - @y Xip

55



$2 .2 .2 .2 .2 .2
1B + S + 835 = Xjp + Xpp + X3

+

2a1g [Xyp X35 ~ Xy X3p]

+

2wyp X35 X35 - X35 Xl

+

2w3p [X1p Xop - X5 Xpp]

2 2 2 2 2 2 2 2 2
+o1g [Xop + X3p] + wyp [Xjp + X3p] + w3p [Xj5 + Xpp]

-2w1p wyp [X;g Xyp) - 2 015 w3p [X;5 X3p5]

= 2wgp @3p [Xz5 X3pl
The quantities X;g and X;p are the only terms which contain variables
involved in the integration over the body,

The meaning of the various terms can be understood in some respect

by considering the case of a rigid body. In the present case the posi-

tion coordinates in the body frame vary with time because deformation

of the body is being included. In the rigid case the body system coor-
dinates of a point, X;g , are independent of time. The underlined

terms are then the only terms which would appear in the rigid case.
Moreover, the integrals of the terms involving X;p would vanish in the
rigid case if the body axis origin were placed at the C. M. of the body.

The integrals of terms containing Xx?B and X;p Xip would not vanish, but
would give rise to the body moments and products of inertia, respectively.

The kinetic energy of the system is obtained by integration over the body
in the body coordinate system:

1 .2 .2 .2
B

Introducing the appropriate expressions for the components X; yields:
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1. .
T
'r-..z..{xiol_l tX;oL} /dm

B
/ledIﬂ + (02B /X3Bdm - waB ]XZBdm
B B ’ B
» T L]
B B B
jXSBdm + (DIB /Xzadm - mZB /xlem
B B B

1 -2 .2 .2
+ "i' [XIB + XZB + X3B] dm
B

+ ojp [[Xza X3p — Xsp X3 ldm
B

B

+ o3p _/[XIB Xop - Xip Xop ldm
B
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1 2 2 2
+ "E’ OJIB [XZB + XBB ]dm
B

+—' (L)ZB ][XIB + XBB ]dm

[[Xm + XZB]dm
- @1p @B / (X35 Xpp ldm
B

- ojp o3y [X;p X3pldm

- wp @3p f [X2p X3pldm
B

(5-15)

Substituting expression (5-15) for the kinetic energy into LaGrange's

equation gives the required equations of motion,
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For xioL H

/ Xipdm + @gp / X3pdm - w3p / X;pdm

B B B
, " d o
Ms {xiOL ! + de [aii] XzBdm + ﬁ)3B xlem - ﬁ)lB stdm = lFio}
B B B
/X3Bdm + wlB f XZBdm - @B /Xlem (5 -1 6)
B B B

M, is the total mass of the satellite, Operating on the direction cosines
only and introducing the notation

EiB = /)'(inm + (DiB kaBdm - ka ]Xinm (5"17)

B B B

reduces the above expression to

4d 3 5. 5.
5 1B + “2B 835 — w3p 92

" d - = -
My (Ko} + layl [ <= 8p + @38 218 — @15 %38 = {Fl

(5-18)

d p— - -~
I B t 9B 85 - @B %18
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The equation of motion for the origin of the body frame can be simpli-
fied somewhat. The coordinates of the origin of the body frame can be
written as follows:

XioL = Xjoc *+ XicL (5-19)
In this expression, X; - 1is the coordinate of the center of mass of the
body and X.. is the distance from the center of mass to the origin of
the local body frame. It should be noted that X; - is the new generalized
coordinate and that X, cannot be varied independently, Then

cL
. (5-20)
My ixioC} ='*Fio‘;
X 43 E E 5-21
Mg (X} + [oy 115=%p + o 8B - @ip O } = 0 (5-21)

The first of these equations is the standard equation for the motion of
the center of mass. The second equation states that the net or summed
motion of all mass points relative to the center of mass must be zero.
It is clear from this equation that }_(iCL cannot be varied independently,
The separation of these equations is advantageous in separating the
orbit from the local dynamics of the body.

Using the three Euler angles as generalized coordinates (see figure 20),
a set of three equations of motion for the rotation of the body-fixed
reference frame is obtained. This set can be reduced to the following
three equations written in terms of the instantaneous angular velocities
about the body axes:

d [ : . . . :
F[ ](3313 X7 = 938 X3pldm ]* “’313[ f‘sza X18 - 918 Xza)dm]

B B

B

0

*e T
+ ’XiOL} - [X3Bdm = MIB (5_22)

B

B
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d . . ” . . .
’5‘;[ j 318 X35~33p xm)dm] + @3 [ [ (®3pX2p~-528 xss)dm] - ‘013[ /(525 X15-%18 xzn)d"']

B B B

. T f stdm
+. {xioL} B = Mop

0

-/ X, pdm (5-23)
B

d : | : : :
T [f‘sza X1-918 xzn)dm] + 18 [ / (815 X3p~33p xua)dm] - @3 [ /;533 X28-%2B Xsa"im]

B B B

B
B

0 (5-24)

where, as before,
8 = Xjp + wjp Xy — ok Xjp

Substituting equations (5-20) and (5-21)-into (5-22) through {5-24) gives
the following: '
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d 3 o . » 3 K
T [ (935 X25 - 52 Xss)dm] + @p [ [‘3213 X18-%18 sz)dm] - w3 U‘amxsa =938 xlB)d‘“]

B B B

d = = -1 d - - - 1
+[‘§; 3B + w3p S1p-w1p 535] [g;s“ f xssd“‘] "[;;; 83p + w1528 ~ @28 518] [r‘: [ Xzsdm]

B

0

T 1
= Mg - {F1° [ay] -0 /Xsndm

B
. (5-25)
—M—s- Xypdm
B
af]. . . . . :
7| J@ipX3p-838 X1pMm | + @3p | f (B3p Xop-82p X3pMm | ~ @1p [ [ (4zp X15-51p Xop)dm
B B B

d = - - 11 d < = = I
|G Gt 2w | |- [¥eem | T %38+ @12~ %18 ||y [Xipdm
B

B
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d - i » N L i
- [ _/ (2 X18-%1 Xza)dm] + 018 [ / @1 X38~-338 xm)d“‘] - ‘"23[ / @33 xzn'azaxas)"m]
B

B B
ML 3, : 23, Bip-ois Bp || = [ Xieem
= 51 + @28 B3p-w3p 5 || 57— | Xepdm | |57 F2m+ @38 Bip-w1s 38 || 5 B

s ]
5 B
"M 2p9m
B
' T 1
=Mip - UTiol” eyl ) = f Xupdm
(5-27)
0

The above equations deal with the behavior of a reference frame fixed
to a point of the body and rotating with the undeformed geometry of the
body. The fact that a body is not rigid is treated by expressing the
~deformed position of a point in the body frame in terms of a set of
generalized coordinates and any desired explicit functions of time.
The position components X.. are of a form such that motions relative
to the undeformed position in the body frame are expressed in terms
of products of {(functions of a time varying amplitude) with (functions
of the undeformed space variables in the body frame)., The generalized
coordinates are the time-varying amplitudes of these motions. The
form of the equation of motion for one of these coordinates g, is given
by equation (5-29), where

{5-28)

9 = Apa o By,
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. I¥;p
+ 1xioL¥[aii] 73 dm > = Fq (5-29)
n
nB

Introducing the relations (5-20) and (5-21) into equation (5-29)
gives the following:

d 5. X o 9% o X5 4
qc 1B 3t -t O3 5T m
de 5 94, B dq, 3 dq,

n

. 98y . aby . aby
- 5 + 8, + 8, -dm
1 2B B -
. B aq, dq, B aq
n .

1 d — - - T a'_

. 9Xip

v {dt iB*“’jB‘skB*“’kstB} [ =
A A .

[

X
-1 T iB
Fqn - -E‘—- lFiO} [qii] ] — (5'30)
s
' nB
5.2.2 RAE Geometry and Deformation Characteristics, -- The equations

of motion have been written in terms of the body geometry as repre-.
sented by X;p . It is now necessary to write these expressions and
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their integrals for the particular body under consideration, This body
has three basic parts: a central core assumed rigid, a set of mast
deployment mechanisms, and the set of mast antennas,

5.2.2.1 Central Core. ~~ For the central core, the various integrals
¢an be evaluated symbolically:

Xjp = X3 = X3 = 0

dq, dq,  dq,

(S (]

¢

985 955 3835

=0 (4 = Apy or Byy)

2 2
f‘xzs" X3p)dm = Iy;. f Xp¥opdm = Iype
[

c

2 2 :
[ (X1 + X3p)dm = Iy, / XjpXgpdm = Ij3.
{ o]

<

c

133 f XpXzpdm = Dysc (5-31)
<

5.2.2.2 Deployment Mechanism, ~- A simple mathematical model is
introduced for the deployment mechanism to ensure conservation
of mass in the system during deployment (see figure 21).
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X3p

Mpm

Xig -
85-0070

Figure 21 GEOMETRY OF DEPLOYMENT MECHANISM

For the mth deployment mechanism, the position and velocity
components and derivative of aiB in body coordinates are

X1p = Z, cay Xjp = Xp = X3p = 0

66iB

Tq:= 0 (qy=A4p,0rBy.)

The mass of the deployment mechanism (undeployed antenna) is:

Mpn = My, — Plg

The various integrals then have the following form:

66



I Xjpdm = Zycay My, — iyl f Xppdm="0 ] XBB&":zosam[Mma"le]
mD ) “mD mD

f (X2g + Xop)dm = Z2s2ay My = ply] / X1p Xppdn = 0
mD mD

(X§B+X323)dm=zg[Mm,—plm] f XIBX3B¢B=Z°28amCam[Mm“"le]
mD mD

/ (X§B+xl’zn)dm=ch"z“mmmlt"’lm] [ XppXzpdm=0  (5-32)
mD ’ mD

5,2.2.3 Antenna Booms. -- The antenna booms are located in the X g
X, plane as shown in figure 22. The displacements of a point on the
an%enna. from its undeformed position are given by the three components

U sV Woe

Xgp

4\

Xea

Xip o=
88-00%1

Figure 22 GEOMETRY OF ANTENNAS
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The position of a point on the m™

frame is given as follows:

antenna in the body reference

X1 = (Zop + Zyy + uy) cay — wy say
X2B = 'm
X3p = (Zyp + Zyy +up) say + wy cay {5-33)

The velocities of a point on the antenna are given by

5(13 = (.Zm*';‘m) cam-;.msam
X2B = m
5(38"': (-zm*";m) sam+;lmcam . (5-34)

Since the axial strain along the beam is assumed negligible, the
velocity Z, is independent of position Z: Z, = i, . Equations
(5-34) then become

XiB = (im + ug) calm—(vl‘usam

x?B = V¥
XBB = (l.n'l+tim) say + ivmcam (5-35)

The displacement functions for the antenna, v and w, are taken as
cantilever small-displacement mode shapes (see figure 23). The
axial displacement is determined by requiring that the axial strain
vanish. These various functions are given as follows (reference 3):

- Zm
m = E :Amnxn(kn 1
m

n

w3 P (In _lzl> (5-36)

3, Timoshenko, S., Vibration Problems in Engineering, Van Nostrand Company, lac., New York, N. Y. (1953).
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i

. Z
where xn(kn—m-)satisfies the equation:

a4 Xn

4 =
l
At "
Zn , '
— =0 Xn = 0, xn = 0
im

n Xp = 0 : (5-37)

Zm\
=1 xi -0 x -0
m)

The boundary conditions for x, give the following relation defining
the values of the dimensionless parameter k, ¢

cosl:'n cosh;n = -1, {5-38)

The numerical evaluation of the various constants used in this
development is given in section 5. 4. '

The axial displacement u is given by requiring that an infinitesimal
axial length in the deformed state be identical to the infinitesimal

undeformed length. The equation governing u is therefore deter-
mined as follows {reference 4):

du \2 av\? aw\? :
—_— —_— —) = 5-
(l + dz) +(dz) + (6Z) 1 _ (5-39)

du du\2 av\?
—_— - [— —_— - 5-40
9z / ! [(az) T (az)] 1 (5-49)

Expanding this about the point where the bracket is zero and re-
taining only the first term gives:

e | D e () e ()
" P n P i

4. Novozhilov, V. V., Foundations of the Nonlinear Theory of Elasticity, Graylock Press, Rochester, New York (1953),
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where

2y - Zn Zn :, L 2y dXy
Z“P"f"'? e\ )\ ) "n(“n'z: " TA
| I

is an indefinite integral subject to the condition that z,, (0) = 0.
For simplicity in further development the following notation is

introduced:

Employing this notation gives:

LN

1 ‘
“m""z'l';' Z%ZAmpznp*'ZanZBmpznp]
P n P

‘a

vm=ZAmxn

w = Z Bon Xa (5-42)

o

During deployment the antenna length is time-dependent, The
velocities are then as follows:
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by = -.;; [Z Apn Z AppZop + 2 By, Z Bmp Znp
n p a P

In , o
F A A ~(1-2)Z;
CRD NG SRR
a P
+ z B z Buap [znp-(l-é')z;,p]
a P

i : in _
Vm = App Xp + = Amn(l-z)x;
E ‘ I E
n n
. . In s -, (5~43)
¥m = E Bon Xn + 0 E Bun (1-2) X
Im
n

n
The expression used herein for the axial displacementtermu.re-
quires some further comment, By introducing a single-term ex-
pansion for the radical function it must be recognized that it is not
proper to consider the square of u; u? will be of the same order
a8 the neglected terms in the expansion for u itself, Therefore in
the subsequent formulation u? is always deleted. Also, the degree
of approximation inherent in the use of a single term expansion
for u must be further examined at a later time.

The terms required to express the equations of motion are now
constructed to exhibit their dependence on the generalized coor-
dinates:

X1 = (Zom + Zp + ug)coy ~ wy say

X2B = m

X3pg = (Zoy + Zy + up) sam+wm.<:a‘n

5(13 = (im + up)cay —~ wy say

)EZB = 6rn

).(35 = (im + G ) say + W, cap

515 = Xip + w5 X3p — @35 Xop

825 = Xop + ©3p X1p - 15 X3p

d3p = X3p + w1 Xp — @pX1p
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LY X28 - 8)5 X35~ X3p Xpp - X3p Xpp |
+o)p 0‘223 + X35) ~ oy X1p Xop - 035 X1p X3p
81p X3p - 835 X1p = X;p X3p ~ X1p X3p
- w15 X1p Xgp + 0yp (Xip + X;p) = 035 Xop X3p
828 X15 - 815 Xp = X3p X1p - X Xy

2 .2
~ w3p X)p X35 — @yp Xyp X3p + @35 (X]p + X7p)

. X3 9%y .
1By " g B *©2mX3p = 93 Xzp)

2 o = gu Xap*@3p Xip - @1p X3p]

9X; %
. 3B 3B .
L T [X3p + w1p Xp ~ wp X;p]
. ™ . P
3515 | 9Xpp IX3p Xap

8 oussun e 4 (1) QRS - O3 SEenaSE [x‘ + @ X s () x ]
1 ! 1B 2B ©3B B 2B
B dq, dq, 2B EPR 3B dq, 3 3

5 20w | 9%p 2X18 "o [X X x
Ip T = | memtee @), e— @ 2B t @3p &1 ~¥1B B]
Bog |9 3By T 1BTg ? ’

aé [ a% X ax

. 3B 3B 2B 1B

ol e e

Expanding these terms and introducing the definitions of X.. in
terms of displag:ements gives the following set of integrals:

fxiadm

me

f'iad‘“

73

[Xss +@)p Xop ~ 0y Xm]



' inB Xinm

ma
XiB XiB dm
a
Xp
57 Y
9
ma
a).(-B
,‘ Xjp dm
99,
ma
Xip .
F} iB
9
ma
3Xp
e X;p dm
dgy
me
aXiB .
g, B
9
ma
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Plgn Z, . - P >
leBdm =9%%m 5~ 1+2 ) sapply E :anxan *hm z : Amp E : Amp Zanp
m n p

ma .

DI 3|
fousf T

DI HIEH "

5.2,3 Generalized Forces (External). ~- The generalized forces associated
with the gravity field and solar pressure are derived in the following
sections.

5.2.3.1 Gravity. -- The vector components of the gravitational accel-
eration in the region occupied by the body are expanded in a first-
order Taylor series about the satellite center of mass, In non-
rotating coordinates,

iqiLl = {ch‘Q + [Gii] ’xio - Xioc‘ (5-44)
where the following notation has been used:

&iL = 8 (X50)

Be; = &L (xjoc)

9g;L (
Gii = axio xioc)

1
' B
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Observe next that
{x X. i ! d
jo = Xjoc ! = {1 XL —T Xjp, dm
B

1
=lapl {Xp -5 [ Hpdm
* B

The components of gravitational force acting on an element of mass
dm are then:

1
‘ngiL} = igcﬂ_ b+ [Gii] [aik] Xyp— o kaBdm . (5-45)
s
B

Integrating this expression over the body yields the gravity forces
associated with the coordinates X;, @

{ngL} = [’ngiL} = {gcﬂ‘tus . (5-46)
B

To determine the gravity forces associated with the other general-
ized coordinates, the incremental forces must be transformed into
body coordinates:

dm
WF gl = [al]] {gjp } dm + lay; 97 [G,k][ak,] x,Ban——M-s- X;g dm

B

The gravity-gradient moments associated with the three body axes
are given by

B
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where the subscripts i,j ,k are cyclic. Making the appropriate
substitutions results in the following moment equations:

1
B B

B

8
B B B

1
T .
MgZB = Qan! [Gii][aik] { /X3BXdem - -i‘—- XSBdm Xdem }
8
B B B

B B B

1
T .
MgBB =-{ai1¥ [Gii][aik] { IXZB XyB dm - o fszdm '/;(dem}
-]
B B . B

+lapIT 1G] ) { / X1pXyp dm— -,;1— /xmdm _/ Xgp dm }(5-51)
' ' s
B B B

The generalized gravity-gradient forces associated with the
coordinates Ap, and Bmp are obtained as follows:
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ox;p |* (5-52)
Fgq, = o ldF gl -
ma
X1 1 9X;p
Fgay =ta;; 1T (1 [ay,] % f Xka—gq';‘d‘""r Xy dm aq. o
- n
ma B ma

JX X
2B 1 2B
T
*!312} [Gii][aik] E/Xka aqn dm-T/XkB dm [ aqn dm %
s
ma B ma

X 1 ax B
+lai3§ (G;;1lay ] ’/ka P 32 ey kagdm -a—:—-dm f(5'53)

s n
B ma

In both the moment expressions and the generalized beam force
expressions, the terms resulting from the gravitational accelera~
tion at the satellite center of mass have been omitted. These
terms drop out when the center of mass motion is separated from
the local dynamics and removed from the equations. Note that the
gravity-gradient matrix[G;;] nevertheless remains a function of

C. M. position relative to the Earth.

5.2.3.2 Solar Pressure., -- A unit vect:or}s in the direction from the
sun to the body is assumed given, This vector is defined in the
local non-rotating frame and is computed separately in the digital
computer program.

rd 3 ki 2 (5-54)
ig = dpp iy + dyp iy +d3p igp

The components of a unit vector -EB along the local tangent of the
antenna are given in the rotating body frame:

? ? ? ? {5-55)
ig = ;g i1jp *+ €35 2B * 3B 3B
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Also, the components of a vector in the rotating body frame and
the components of a vector in the non-rotating local frame are
related:

fer} = [agjllejp} (g} = [a;;1T ;1 }

8
lying in this plane, perpgndicular to ig, is required. This
vector is designated by i, ¢

The two vectors i, and ;B form a plane. The component of -Es

r raV S
iy = ip x(‘sx‘B)

R 1 (356

-

In terms of the vector i, , the solar pressure force acting on an
effective element of area ds can be written as follows:

deB = inB linslpo ds (5-57)

where p, is the solar pressure at normal incidence on a perfect
reflector, and the effective area increment for the cylindrical
antenna of diameter 2h is

d 2 (2h) dz
S = =
3

iy - g = 19;1T la) fejp)

@FpiplT = igp | pods (41T [ay] I8y — e;p eyp] (5-58)

The moments due to solar pressure including the correction for
center of mass motion are given by
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T H 1 ?
MP]-B = PO {di! laill [/‘ ’nBlelB GZBXBBdS (H" /XSBdm> /l-lnB'elBCZBdS ]
S
‘ B B

B

. [1 H
- [ﬁ‘nslemesaxzads "(T' /xzad‘“> /‘ ‘nalelaesa“]
]

B B B

m) /HnB] (l—e%B)ds]

B

- 1
+ po 141 Tlay ] -[ flinsl(l-"%xa)xssds - (‘{f f X3pd
]

B B

e 1 74
‘[ [ linglezp €38 X pds - (-M— / xzadm> [ I‘nB|°ZBe3Bds]
s

B B B

T H | 1 --.'
+ PO idi, [ai3] I‘nB' CZB CBB st ds — -hT XZB dm : ‘lnB‘ CZB CaB ds
S
. B

B

1 o l(me2o)Xon ds - [ L HIRT P
S

B B B
(5-60)
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-» 1 >
Mp2p = Po 41T la;y] [ / linp| (1~} xssd"‘(m— / xsa“"‘) ﬁinsl(l-efa)ds]
: 8

B B B

H 1 >
+ [ / liaple1pespXypds - (—-M / Xm‘*"‘) / |*nB|°m=35"s]
s .

B B B

- 1
-

B B

m) flina|°15°23ds]

B

P 1 >
+.[ |‘nB‘°ZB°3Bxle"‘(T j xusdm> [ Ixnalezaesads]
S
B

B

: hed 1 -»>

B 5B B

- . 1 I
- [ _[ linpl(1~¢3p)X;p ds - (T f X8 dm) / Vap |1 —%B)ds]
S

B B B
(5-61)
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-> 1 >
My3p = Po 41T a; } —[ /linB].(l—ele)XZBds _(_..M /Xzadm) /IinBlu-efB) ds]
: 8

B B B

? 1 2
-[ [ liple1pe2pXypds - (—M— ] Xlem> [ hnBlemezsds]
S
B

B B

P 1 P
+ PO {dilT ’aizi [ [‘lnal elB CZB XZB ds — (T X2B dm) /hnBl elB eZB ds]
S

B B

1 -
S .
B B

B

- 1 ->
+Po{di{r!ai3; [ flinﬁ‘elB%BXZBds“ (T [XZBdm> flinB‘ClBe3Bds]
. s

B B B

- 1 >
-[ f liglep 3 X pds - (‘-M— [ Xlem) j lingle2p €38 ds]]
y (5-62)

B B B
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The generalized solar pressure forces associated with the generalized antenna
coordinates {(q,,Ap, or B, ) are given by

. 9X1p 1 X ,
Fpq, = Pold;} lan![[ / lipl(1-edp) ™ ds - (-RT: / = dm 1inB|(1-efB)ds]
ma B

- 9X7p 1 X8 -,»
- llnB‘GIB CZB aq,n ds -~ E- W dm llnB IelBeza ds
ma B

X ) ¢
3B 1 3B -
- li,plejpean === ds — {e—mm dm]ll |eeds]
[/ nB!*1B*3B aqn Ms aqn nB!*1B*3B
ma ma B
" 9X1p 1 ‘”‘18
+ poldgiT lagy} [—[ , [ bapleezs 5=~ {y— | 53 lap! °u;°3a“s
n
] ma s ma B

+[/ln l1-e3p) i ds ! jhc dm ioal(1-e2 )ds]
BT Taq, M, J Tiq, Bl e2B
ma
1.4 ax
H 3B 1 3B
ma
r ox ax
g ] 1B 1 1B
B

liplespe T ds - [— axm e dm iyl as
- 1 e ——— o [ 8
nB!“2B 3B 5o~ Ms e, 'aB!€2B°3B '

ma
) )¢
g 3B 1
+[ / liggl(1~e3p) o - (Ti‘[ N li 31(1-e33)ds]]
n 8
(5-63)
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The various terms and integrals used in the solar pressure loadings
are given in the following pages.

(1 a"m) ow
+ e

€iB

z
ov
€2B T 5,
dug, 8wm
5-64
e3B=(l+ az>sam+ 92 cay ( )

>
ma

f liggl (1 = e2p) ds

ma

-
f linBleiBeindes i # )
ma

e 2 PN
/. llnB](l-elB)XiB ds 1 # )
ma

9X:

-» ]B R .

lingleip jp Erla 4
ma

X,

" B
(g1 - efy) —— ds
t?qn

8
)
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5.2.4 Generalized Forces (Internal). -~ The initial determination of the
generalized forces associated with deformation and temperature
gradients is limited to the consideration of small displacements. The
large displacement treatment of these generalized forces will be in-
cluded in the final report for Phase B.

5.2.4.1 Forces Due to Deformation. -- The strain energy due to bending
for a cantilever beam is given by the following relation:

1
El - - -
V-5 ki o / x4 (2) dz (5-65)
m g ma’

The generalized force associated with a potential is given by

F av
o E;:
- 1
k4 EI g = =
qun = - T 9 Xa (2)dz (5-66)
m 0

5.2.4.2 Forces Due to Temperature Gradients. -- The effect of a
temperature gradient is obtained by using the standard relation
for temperature stress:

o, = ~EaT
Evaluating the work done in an incremental displacement 8q, gives
the generalized force associated with the temperature differential

. across the beam section, A’rq .
n

TanIa

Fan = m—;f Aan k, X5 (2)dz (5-67)
0

It is assumed that the temperature varies linearly across the beam
diameter. The magnitude of the temperature differential in the
direction of the displacement q, is obtained by taking the appropriate
component as illustrated in the derivation of the solar pressure
loadings, This gives the following relation for the generalized
forces associated with the temperature gradient, assuming also a
constant gradient along the length of the member computed on the
basis of the undeformed geometry:
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FTAmn = an ATO {di ;T ‘aiz; . (5-68)

Fr, = kp, ATo[-say(qiTiayls canldiTlagl) (5-69)
mn

) kyEla 1 (5-70)

Ta = 2hl, Xa (D

AT, is the temperature differential experienced under the condition
of normal incidence.

5.2.4.3 Forces Due to Damping. -- The effect of internal losses in the
motion of the antenna is taken into account by a force of the standard
damping form in the equation for any beam mode.

Fpg = -Dada (5-71)

where

- - EI
D, =2¢, k%: Pl Xcn /- 14 (5-72)
' p

A detailed discussion of damping is given in appendix A,
5.3 SUMMARY OF EQUATIONS OF MOTION

5.3.1 Position of Center of Mass of Central Core. --

Mg XL

L. B B :
+ @7p | 3j) f X3pdm — a3 f Xjgdm
. L B B -
+ @35 |2 f Xipdm - aj fxzedm
| B B
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5.3.2 Angular Orientation of Body Frame, --

xch [a

+ ’_‘2CL
+ §3CL
+ a1
- dzp

13 £ Xopdm - ajp fxssdm]

B
- B B =
233 f Xopdm - a3 f X3pdm
- b ' B -
[ 2 2
B

I
[ i ]

Ay [ ! (X3p X5 ~ X3p Xza)dm]

.

d 2 2
+ "’IB '—'d: (XZB + Xsa)dm
B
d . .
= @28 ;‘j X1 Xzpdm "f 28 X18 — ¥2B X1B)
B B
d N o
~ @3p [‘;‘; f X1p X3pdm + f (X1 X35 — X1 XSB)d“‘]
B B
™ I
~ ©)p ©B X;p X3pgdm
"B .
~'B N
2 2 2 2
"B
2
+ ((035

B

2
- @2p) fXZB X3pdm =Mp + Mpua]
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XieL [‘11 f X3pdm - a)g l X)pdm ]

B
* XL l}z; f X3pdm - ap; f dem]
B

B
* XaeL [‘31 f X3pdm - ag3 dem]
B

- 61 _L X1p xzadﬂil :

e

2 2

- @3p [{xza xssdm]
d . .
‘T |;[ X1 X3p ~ X;p X3p) d'ﬂ
B
d . .
- @B l:d—t f X1p Xopdm + f (X2p X15 - Xzp X;p) dm]
B B
d 2 2
+ Q)ZB —d"t" f (XIB + X3B) dm
B
d Xap Xop = Xap Xop) dm
- u3p [E}' f Xpp X3pdm — j; (X35 X35 — X3p X3p)
B

_
+ w)p @ f XoB Xsa"'{'
B

| 2 2 2 2
+ (dlB mBB Ff (XZB + X3B)dm —f (XIB + sz)dm:l

S~

| “B B

= @2 “3p i X1B Xzs"ﬂ]’
B

+ (odp- m§B>f X1B Xasdm] = Mgp + Mpop
B
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XieL [‘*12 f Xipdm - aj) f Xypdm
B B

+

} b

X2eL Ezz f Xipdm ~ ay; f X pdm
B

B

X3cL [‘32 ‘{ Xipdm ~ a3, f Xopdm ]
B

@18 [ X1B Xasdm]
@op [ X2B Xzadm:l

d3p (xus + Xzs)d“‘J

w

?M (X5 X1p - Xpp xm)dm]

d
®1B [;;fxm X3pdm -f(xua X35 - X1p "‘313)5'"]
B B
L .
2B | f X2B X3pdm + f (X3p X5 - X3p X2p) dm

B B
d 2 2
@3 |5 / X1 + Xpp) dm
‘B

2

[ B
“1B @38 f X2B X3pdm
B
“2B ©3B [ f X1B Xaadm]

B

2 2
(w - X =
2B 13)[./ 1B xzadm] = Mg3p + My3p

B

90

(5-76)



5.3.3 Relative Deformation of Antenna Booms. -~

. ax. :
- ’B -
{xicLlT [.ii] {f 74 dm}

ma n

. T X35 Xop \
+ w)p X8 - X3 &7
aqu aqn
—ma

. T f " X, % axm> ] :
+ @ " - = | dm o
3B 2 1B aqn 2B aqn

d f ( . g . K X3
A — iB .,.__. + X o + X B g dm
de [ 8, 2B F7 3 N

f (x 23T} X 297 % 9X3p dn
- — + s —— m
A 1B aqn 2B aqn 3B aqn

d X3p X8 , 9X3p ., 9Xpp
n n ma

ma
+ol|d fx —B_ 3B) fx B _x 3Bl
[dt . (38 a4, X18 a4, m o+ 3B 5 1B 3, -
ma ma

d X7 9X1p ., g . g .

ma ma

G2 fx 9X;1p . Gl j'x- dXop ‘ IO )[ fx 0X3p dm]
- {w + @ e dm -{w + w—dm | - 1B * @28 B
2B + @38 18 5 1B + @3B J B 5 J 3B g,

ma

X5 9Xyp
+ ﬂ)lB G)ZB sz "'—_aqn + XIB "aq—n' dm

(Eq. 5.77 cont'd on next page)
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+ © © v + m
1B “3B 3B g 1B G-

ma

X ang X ast d F F F, + F + F

+ (DzB @ m—— 4 B —— m = + + T D

3B 3B gq, 2B 9q, By, Pq,  %q, 4, Pa,
ma , (5-77)

The various integral terms in equations (5-73) through (5-77) can be
expanded in terms of the beam coordinates A, and By, by substitution
of relations (5-34) through (5-36) where appropriate. These expansions
have been carried out, and first order terms in A, and B, included in
the present flexible -body digital computer program. The details of the
expanded equations will be summarized in the final report for Phase B
of the dynamics study.

5.4 DETERMINATION OF CONSTANTS. -- The various definite integrals
developed in the derivation of the equations of motion are evaluated in this
section. The mode shape function used is the linear-theory cantilever mode

shape given by

X (ky Z) = Cy, [sin (ky Z)— sinh (ky 2)] + Cop [eos (k, 2) = cosh (k, 2)]  (5-78)
where
c cos kn + cosh kn
la = 3gin l-tn cosh En ~ 2 cos En sinh k;
sin Icn + sinh Tcn
Cy = — = = = =
2n 2 sin k, cosh k, - 2 cos k; sinh kg
The expressions for the various constants are as follows:
1
a. Xan ='/ Xn 92
0
1 cos kn + cosh kn 2 Cin
Xan En sin;ncosh—kn - cosin sinhT:n = En (5-79)
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-

0
- 1 . " sin T:n + sinh T‘n 2Cyq
xbn oy — — . - " - . - — 2 (5"80) .
'i'nZ sink, coshk, ~ cos kﬂ sinh kn kn
1 .
& Xen = / Xg2 4 Z
0

. = = forall (5-81)
xcu - '4' ofailin

The function associated withthe axial displacement term is given by

Zyp (D) ""/)'(n Xp 42 (5-82)

and Zmp 0 =0
5.5 LIST OF SYMBOLS
Apa Amplitude of the nth mode of the mth antenna in X;g direction

Layl Matrix of direction cosines transforming vector components from
body-fixed coordinates to local non-rotating coordinates:

{XLl = [Si"] {XiB}

"Bpn Amplitude of the nth mode of the mth antenna in the X;p X35 plane
“perpendicular to the undeformed axis

D - Generalized damping coefficient for nth mode of antenna
d; Components of unit sun-vehicle vec'to’r’

E Young's modulus for antenna material

¢ Components of unit vector tangent to satellite surface
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FiL

n

Gjjl

2h

9n

AT
o

u, v,

10

xioL

XiB

Components of total external force in the local non-rotating
reference frame

Generalized forces associated with a coordinate q,
Gravity gradient matrix in non-rotating reference frame
Components of gravitational acceleration vector
Diameter of antenna

Area moment of inertia of antenna cross-section

Mass moments and products of inertia for central core
Length of mth antenna

Total mass of the satellite

Components of the moment vector due to applied forces in the
rotating body frame

Total mass of mth antenna

Solar radiation pressure at normal incidence on a perfect reflector.
Generalized force associated with generalized coordinate 9

Any generalized coordinate

Kinetic energy of the system

Temperature differential across antenna diameter at normal solar
incidence

Strain energy of deformation

Components of displacement of antenna relative to its undeformed
position

Cartesian components of position relative to center of Earth

Cartesian components of origin of local reference frame relative
to center of Earth

Cartesian components of a point in the rotating body-fixed reference
frame relative to the CM of the central core
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X

ioc.

XieL

iB

Subs criBts

Cartesian components of a point in the non-rotating local reference
frame relative to the CM of the central core

Components of position of satellite center of mass relative to center
of Earth in non-rotating frame

Components of vector from center of mass to the origin of the local
coordinate system in non-rotating reference frame

Angular orientation of mth antenna in X;gX3;p plane, measured from

XIB axis

Components of velocity relative to the local origin in the rotating
frame ‘

Mass per unit length of antenna
nth mode shape of cantilever beam
A differential element of mass

A differential element of effective surface area

Integration over the entire body

Integral over satellite central core

. Integral over mth deployment mechanism

Integral over mth antenna

Indicating thev mth antenna

Indicating the nth mode shape

Refers to body-fixed rotating frame

Refers to center of mass of entire satellite -

Refers to local non-rotating frame
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Refers to Earth-centered non-rotating frame

Indicates internal damping force; or, refers to a deployment
mechanism

Indicates gravity or gravity -gradient force or moment
Indicates solar pressure force or moment

Indicates force due to internal strain energy; or, refers to total
satellite

Indicates force due to temperature gradient
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CONTROL SYSTEMS

GENERAL REQUIREMENTS., -~ The control system discussed in this sectionis
operative only after separation from the booster and initial orientation to
the desired attitude have already occurred. (It is presumed that the initial
orientation prior to antenna rod deployment is provided by another control
system, which is not covered here.) The control system discussed below
will be operative during the deployment/acquisition phase and during the
mission phase. The control system requirements for a gravity-gradient-
stabilized Earth satellite may be broadly classified into performance re-
quirements and design requirements. The performance requirements are
as follows:

a. During the deployment/acquisition phase, the control system is
required to supply the necessary damping and/or stabilization for a
smooth transition to the mission phase.

b. During the mission phase, the control system is required to supply
the necessary damping to achieve:

(1) Adequate damping of both small-angle and large-angle motion
about all axes.

(2) Adequate control torques to minimize the static errors which
result from quasi steady-state disturbance torques, such as solar
pressure or residual magnetic moment torques.

(3) Minimization of the libration amplitudes due to periodic dis-
turbances such as magnetic moments, or orbital eccentricity.

The design requirements and constraints are as follows:
a. High reliability over the required mission life
b. Ability to withstand the boost accelerations and the prolonged ex-
posure to a space environment, including the thermal shocks associated

with entering and leaving the Earth shadow

c. Ability to meet the weight, size, and electrical power constraints
imposed by the vehicle

d. In addition, the control system should be easily maintained and
checked out before launch, and should require a minimum of special
instrumentation or other input data for its operation.

6.2 CANDIDATE SYSTEMS, -~ Allcontrol systems considered for the RAE vehicle

can be classified into either the active or passive category. An example of
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an active control system is a design which uses a body-mounted, three-
axis magnetometer, torquer coils mounted along the three vehicle axes,
and stabilization and control electronics. Prior to the deployment/acqui~
sition phase, one coil aligns the axis of minimum moment of inertia with
the direction of the local Earth magnetic field, while the coils about the
other two axes are used to obtain damping by means of appropriate phase
shifts in the stabilization electronics, using the magnetometer data as the
input signals to the electronics.

When the local magnetic field is aligned to the local vertical within a suit-
able tolerance (up to 15 degrees), the deployment/acquisition phase may
begin. During the deployment/acquisition phase the coils could be operated
as before, i.e., one coil for stabilization and the other two coils for damp-
ing. During the mission phase, however, all three coils would be operated
in the damping mode (by a logic change in the electronics) since stabiliza-
tion is achieved by means of gravity gradient.

The passive control systems considered for this vehicle can be classified
into three broad categories, according to the methods and means used to
damp oscillations about the equilibrium orientation:

a. TRAAC-type configurations
b. Magnetic anchor configurations
c. Hinged multibody configurations.

The TRAAC-type configurations employ a ''tip-mass" attached to one end
of a lossy helical spring. The other end of this spring is connected to
either a fixed or extendable boom which is a part of the main body. (TRAAC
is an acronym for the Transit Research and Attitude Control satellite which
was launched from- Cape Kennedy on 15 November 1961. )} In operation, the
pitch and roll librations of the main body about the local vertical will cause
the spring to stretch and compress along its axis. Mechanical hysteresis
within the spring (due to a cadmium coating) will dissipate energy to pro-
vide some measure of damping.

The Rice-Wilberforce damper is a modification of the TRAAC damper in
that it employs a winding mode as well as a linear spring mode. Tuning
of the individual modes to the pitch and roll libration frequencies, respec-
tively, increases overall effectiveness.

The magnetic anchor configurations use two concentric spheres separated
by a viscous fluid. The internal sphere contains a bar magnet which causes
the inner sphere to align itself to the Earth's local magnetic field. The
outer sphere is attached to the end of an extendible rod which is deployed
from the main body. Relative motion of the inner and outer spheres is op-
posed by the viscous fluid, causing energy to be dissipated.
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6.3

The hinged multibody configurations use one or more auxiliary damper
bodies which are hinged to the main body through elastic and dissipative
couplings. The selection of hinge points, the mass distribution of all
bodies, and the hinge parameters are so chosen that vehicle libration
causes relative motion between the parts of the vehicle, and hence energy
is dissipated. -

GENERAL PROPERTIES OF CANDIDATE SYSTEMS, -- As a general com-
ment, the passive systems require no special instrumentation, no controller,
and no switching logic. They will always tend to convert kinetic energy to
heat, and thereby reduce the vehicle librations. On the other hand, the ac-
tive systems will, in general, require some instrumentation (such as mag-
netometers) and controller or switching logic. The applied torques will
reduce vehicle librations in a properly designed active system. However,
if the torques should be applied at the wrong times (due to flexible body ef-~
fects or some controller malfunction), the applied torques could actually"
increase librations and worsen the situation. In general, the passive sys-
tems are likely to be simpler and more suitable. The following observa-
tions can be made about the three passive configurations:

a, TRAAC-Type Configurations, -- These configurations are charac~-
terized by low damping rates. As an example, the TRAAC satel-
lite pitch libration amplitude was reduced from 25 to 5 degrees
over a 15-day period for an average decrease of 1. 33 degrees per
da,y.5 While the damping rates are higher for the Rice-Wilberforce
damper,  settling time constants of about six orbits are typical,
with the highest damping in pitch and the lowest damping in yaw.

b. Magnetic Anchor Configurations, -- The viscous coupling of the
Earth's magnetic and gravity-gradient fields creates cyclical dis-
turbance torques for most orbits. . A reduction of the fluid viscosity
(and hence the coupling) will reduce steady-state error at the ex-
pense of degraded transient response. Based upon past practice,

a value of viscous coupling should be selected _?o produce an expo-

nential decay time constant of about 20 orbits.’ With typical initial

conditions, the vehicle would attain a steady-state attitude in about

40 to 50 orbits. Transient response is therefore only lightly damped
~ with this approach. '

5. Fischell, R. E., The TRAAC Satellite, APL Technical Digest, 1, No. 3 (January = February 1962).

6. Buzxton, A.C.,D. E. Cnmpbgll, and K._Losch, Rice/Wiberforce Gravity — Gradient Damping System, presented at the
?gén?)osmm on Passive Gravity — Gradient Stabilization, NASA Ames Research Center, Moffett Field, California (May

7.. Katucki, R. J., and R. G. Moyer, System Analysis and Design of a Class of Gravity — Gradient Satellites Utilizing
Viscous Coupling between the Earth’s Magnetic Field and Gravity — Gradient Fields, preseated at the Symposium on
Passive Gravity — Gradient Stabxlzzatxon, NASA Ames Research Center, Moffett Field, California (May 1965).
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c. Hinged Multibody Configurations. ~~- The transient damping
achievable is good for both small-angle and large-angle motions.
As shown in reference® » settling times of about three orbits
about all three axes can be attained. In addition, the flexibility
available in the geometric arrangement of the damper bodies and
the hinges permits a wide range of performance characteristics
to be obtained.

6.4 MATHEMATICAL MODELS. -- From the preceding discussion the hinged
multibody configuration presently appears to be the most feasible approach
for application to the RAE. However, other approaches should not be
abandoned at this time. The elastic and dissipative couplings between the
main body and the auxiliary body (or bodies) can best be obtained by use of
a magnetic hysteresis damper. This device has three advantages when
compared to a viscous fluid (linear) damper, namely:

a. Design is simple and reliable in the space environment, since
there are no fluids or fluid seals. Design parameters are unaffected
by the space environment.

b. Damping depends upon angular travel, not angular rate. This is
desirable since angular rates of the libration modes are very low.

c. Design parameters, i.e., the spring constant and maximum damp-
ing torque, can be independently varied over wide ranges with rela-
tively minor changes to damper size, weight, or volume.

Two candidate configurations for the damper boom geometry are shown in
figure 24. Figure 24a shows a four-boom (or three-body) configuration,
where one pair of damper booms is in the orbital plane to damp pitch libra-
tions, and the second pair of booms lies normal to the orbital plane to damp
yaw and roll oscillations. While the main body is nominally oriented along
the local vertical, all damper booms are nominally oriented normal to the
local vertical,

The second configuration (figure 24b) is a two~boom (or two-body) arrange-
ment, where the damper is nominally normal to the local vertical, and is
also skewed by a large angle (about 60 degrees) to the plane which contains
the vee antennas. This, in turn, skews the principal axes of the main body
with respect to the orbital plane, making the single damper boom effective
about all three axes by means of inertial cross coupling.1 1

8Zixmnernmn, B.C., Study of ATS Gravity-Gradient Experiment, presented at the Symposium on Passive Gravity-Gradient

Stabilization, NASA, Ames Research Center, Moffett Field, California (May 1965).

9Hartbaum, H., Hooker, W. Leliakov, I., Margulies, G., ‘*Configuration Selection for Passive Gravity-Gradient Satellite’’,
presented at the Symposium on (same as above).

10g.; *Nei " i i i ity-Gradient Stabilization’’, presented
Reiter, G.S., O'Neil, ]J.P., Alper, ].R., “Magnetic Hysteresis Damping for Gravity-Grad 3 , Pr
at the 'Sympc;sium on Passive péra’vity-éradient Stabilization, NASA, Moffett Field, California (May 1965).

ll'I‘inling, B.E., and V.K. Merrick, Exploitation of Inertial Coupling in Passive Gravity-Gradient Stabilized Satellites,
1, No. 4 Journal of Spacecraft (July-August 1964).

100



JOULNOD SIXV-334HL ¥04 NOILVINOIANOD WOOS d¥3dWVa 3LVAIONYD T @inBid

INVId 33A VNNILNV ANV WOO0S ¥3dWVA NIIML3IE IT1ONV =8 eeel-as

(INVd TVLISHO0 NI S3IT)
VNN3ILNV

(INV1d TV1IGH0 01 G3IM3NS) 33A

VNN3ILNV 33A

W008 ¥3dWva ANV

Hzo_ LOW VLIGHO NI SIAOW) H NOILOW

) =

W009 ¥3dNva HOLId

008 ¥3dWva W

A

_zo_._.o_zH

NOILOW

(INVd TVLISH0 0L TVINION)
WO00g ¥3dNVa TT04/MVA

ANV1d TVLNOZIIOH
UNV 3NVId VNN3ILNV
—33A 40 NOILIISHILNI

VNN3ILNV 33A VNN3LNVY 33A

NOILVYNIIANOD WO0E-0ML 'NOILV¥NDIINOD WO08-¥N04
) , (®)

101



The configuration of figure 24b appears to be more attractive for this pro-
gram since a sizable auxiliary body moment of inertia is required (due to
the extremely large main body moment of inertia). For a limited total
damper boom weight, a single pair of damper booms can provide the great-
est moment of inertia since it can locate more boom mass farther from the
mass center.

For the first simulation, a planar case will be examined. Therefore, it

will resemble a planar version of figure 24a, where only pitch librations

are allowed; all motion lies in the orbital plane and there is only one pair
of booms.

The magnetic hysteresis damper unit which connects the ends of the damper
booms to the main body is shown schematically in figure 25 (from refer-
ence 6). The damper booms are rigidly attached to a circular vane of mag-
netically hard material (large area enclosed in magnetic hysteresis loop).

A torsional spring is attached at its midpoint to the center of this vane.
Both ends of the spring are attached to the main body to provide the elastic
coupling between the damper booms and the main body. A set,or sets,of
permanent magnets is mounted on the main body close to and around the
periphery of the vane. As the boom rotates relative to the main body, the
magnetic pole pieces will alter the magnetization pattern within the vane.
Dissipative torques will thereby be generated and kinetic energy will be
converted to heat. A typical unit weighs approximately 1 pou,nd.6 A pair

of booms suitable for this satellite and attached to the damper would weigh
approximately 12 pounds. The differential equations describing the motion
of the auxiliary body {(two damper booms) and the main body in body-centered
rotating axes (aligned with the local vertical and the normal to the orbital
plane) are given here. It is assumed that:

a. A circular orbit is achieved over a spherical Earth.
b. Gravity gradient and inertia forces produce the dominant torques.

c. The main body (with its double-vee antennas) behaves as a rigid
body.

d. The damper boom pair behaves as one rigid body.
e. The damper mass center coincides with the vehicle mass center.

Referring to figure 26 and using a coordinate frame fixed to the local verti-
cal, we have:

Auxiliary Body:

p# + 2 0%Igain 26 + K[g-0-n/2] + Ty = 0
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Main Body:

16 +.;_92(IR-IY)sin 260-Klp-0-n/21-Ty = 0

where

¢ angle between damper booms and the local vertical

8 = angie between main body yaw axis and the local vertical

K = torsional spring constant for hysteresis damper (ft-1b/rad)
Ty = magnetic hysteresis torque (ft-1b)

Q@ = vehicle orbital rate (rad/sec)

Iz = auxiliary body (composed of two booms) moment of
inertia about its mass center

Ip = main body moment of inertia about pitch axis
Iy = main body moment of inertia about yaw axis (= Ip sin? ¢ )
Iy = main body moment of inertia about roll axis (= Ip cos? a)

L, = length of a single antenna rod (=750 feet)

Lp = length of a single damper boom (=350 to 450 feet)

e = antenna vee half-angle.
Since the damper boom pair is nominally at an unstable null with regard to
the gravity gradient, the spring constant must be greater than the equivalent
gravity gradient '""spring constant,' that is:

2
K 2> 30%I,

for the damper body to remain extended perpendicular to the main body.

The hysteresis torque, Ty » can be described by the relationship (see
reference 1)}

leabroff, A.E., A Two-Damper Passive Gravity Gradient Stabilization System, presented at the Symposinpm on Passive
Gravity-Gradient Stabilization, NASA, Moffett Field, Calif. (May 1965).
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Tm for TH > Tm

Ty = { T + [sgn(® - )b A(=6) + by A($—6)? + haA(d~ 03] for [Ty | < T,

'me for TH < - Tm
where Ty is the saturation torque of the hysteresis damper (see figure 27).
(¢ - 0) is the angle between the damper boom and main body yaw axis, and
ATé - 9) is the change in this angle since the previous sign change in (¢ - §).
T, is the value of magnetic hysteresis torque that existed at the instant

(¢ - 8) changed sign. The coefficients hy, hy , and h3 are determined from
a polynomial fit to test data for a given hysteresis damper, This formula-~
tion for the hysteresis torque allows the capability of generating minor
loops at any location in the torque -angle space.

6.5 PARAMETER SELECTION. -- The final selection of parameters will be
determined by means of analog and digital simulation. A compromise be-
tween transient and steady-state performance and practical design con-
straints shall be considered. From reference 7, a preliminary set of
parameters have been estimated for a starting point in the design and are
presented in table I below:

TABLE 1

HYSTERESIS DAMPER DESIGN PARAMETERS-FIRST CUT

Boom length = 396 feet
Number of booms = 2 (in-line)
Total moment of inertia (Iz) = 20, 000 slug-ft?

Orientation of boom axis: skewed to vee plane by 60 degrees
and nominally perpendicular to the main body yaw axis.

Magnetic hysteresis damper unit

1) spring constant, K = 1.9 x 10-2 ft-lb/rad

2) maximum hysteresis torque, Ty = L. 2 x 10-3 ft-1b.
Est. weight of booms (2) 12. 3'1b.

Est. weight of hysteresis damper unit 2 1b*
Total 14,3 1b

T E—— - . .
The construction of a hystetresis damper to develop & maximum dtmpin, torque of 1.2 x 10 3 ft=lb for  unit weight of
less than 2 pounds is conadidered to be well within the cuzrent state of the ast.
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.1

PRELIMINARY RESULTS

PRELIMINARY EVALUATION OF DIGITAL RESULTS. -- The comparison
of the digital results from the rigid-body program with analytical results
has been primarily restricted to planar cases due to the various difficulties
inherent in obtaining analytic solutions to the thoroughly coupled three
dimensional problem. Even the planar problems such as determining the
planar libration period can introduce considerable complexity into the
analytical solution.

7.1.1 Planar Libration Period and Amplitude. -- The equation for planarA
libration of a rigid body in circular orbit is:
. I -1
0+ 2 02 12
2 I,

sin 26 = 0 (7-1)

where 1,,1, , I; are the principal moments of inertia about the roll,
pitch, and yaw axes, respectively, @ is the orbital rate, and 6 is the
pitch angle relative to the local vertical. The pitch axis is assumed
to be normal to the orbital plane. For the RAE double -vee configura-
tion,

-1
2 _ cos 2a (7-2)

I

where ¢ is the half -angle of the antenna vee. Note that

46 40 d6 . a8

" xT w e -2
and that sin20 = 2sinf@cos 0. Then equation (7 -1) becomes:
é'éé‘=-3ﬂzc032asin0coso (7-4)
dé
which is easily reduced to .
6db = - 302 cos 2a sin 0d (sin 9). (7-5)
Integrating equation (7 -5) yields
62 = - 302 cos 2asin2 6 + C. (7-6)
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‘The constant C is easily evaluated by 6bserving that ¢ = 0 when ¢ = 0p,,;

hence:

dé
el S \/3 02 cos 2a (;sinZGmax -sin8) . (7-7)

nax » during which 620, is
one -fourth the total libration period. Hence, as a function of Op,, :

)

The time to oscillafe from 0=0to 6= @

max
Plib Omay) = '_‘4_‘,——— 20 : (7-8)
13 cos 2a -/sinz Omax ~ sin® 0

Recall that the small-angle libration period P, is:

Py = Ppjp (0) = — (7-9)
Q3 cos 2a
as can be derived easily from equations (7-1) and (7-2). Substituting
relation (7-9) into (7-8) then vields:

Omax
Piip Opay) =— P / a0 . (7-10)
1ib Ymax! = ° -
/.2 . 2
r A sin Gmu—sm 6

The integral in equation (7-10) is simply the complete elliptic integral
of the first kind, F(k, n/2) :

Omax 1 ,
/ a6 / d (7-11)
[ 2 2, 71—’514:52 B
A _sin omax ~ sin<6 /. ¢ ¢

< F(e—) (7-12)
whére
k = sin 6, ~ (7-13)
- i o1
max
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Thus, finally, the libration period is:

2 . L
Piib Oy’ = l‘)o' F (sin 6

mex 7 )+ (7-15)

The complete elliptic integral can be expanded as:
m
2

3-
2°4°6

n 2 2 2
F(k,—z—)= [1+(-§-) k2+(-£-4-)k4+( ) k6+---~] (7-16)

from which the period can be expressed as:

1 2 . 2 3 2 . 4 3.5 2. 6 -}
Plib(omax) =P, [1+(';‘) sin emax+( - 4) sin emax +(_2'4._6“)sm emax*’"'f_'"

It is evident that as 6,,, approaches zero, Pj;, approaches P,, Fig-
ures 28 and 29 show the excellent agreement between the analytical and
digital results.

Another planar check case was run with a 30-degree initial pitch angle
and zero inertial rate. For this case,

1
== cos™1 (cos 26; - = 73.2 degrees (7-18)

3 cos Za)

max

Figure 30 shows the excellent agreement.

.2 Non-Planar Oscillations. -- Two non-planar cases were also run.

The effect of a 1-degree yaw offset is shown in figure 31. It would be
expected that the pitch axis would be initially unperturbed but that the
effect of cross -coupling would eventually cause coupled motion exhibit-
ing a period equal to the orbital period. An initial roll offset of 1
degree would be expected to result in an immediately noticeable motion
of the pitch axis, with subsequent oscillations of both orbital and half-
orbital period. These effects are shown in figure 32.

.3 Effect of Orbital Eccentricity. -- To check the analytic ephemeris

simulation of non-circular orbits, several cases were run to demon-
strate the forcing effect of orbital eccentricity on planar libration. It
can be shown that for small values of eccentricity, the forced steady-
state librational response is:

2e

" 3cos2a-1

sin Qot (7-19)

110



Plib

4.0 ' n
p Porpﬁ_ ! 2
3.6 0= -
,“/5_ =13
YT
2-AXIS ALONG NORMAL
3.0 TO ORBITAL PLANE o
6 MEASURED FROM LOCAL
VERTICAL TO 1-AXIS i
H
2.8 $
it
H © RESULTS OF DIGITAL -
SIMULATION i=: I
2.4 £t
AR
2.0
1.6
sozams
1.2 i
1.0 EhiHges &
0.8

0 10 20 30 40 50 60 70 80 90
85-12000 LIBRATION AMPLITUDE (deg.)

Figure 28 COMPARISON OF ANALYTICAL AND DIGITAL RESULTS FOR PLANAR
LIBRATION PERIOD (NORMALIZED)

111



*33S ¢-0T X NOILV1T1IS0 40 dO¥3d

90°

© | 600
INITIAL DEFLECTION

30

65-11996

Figure 29 PERIOD OF PLANAR LIBRATION VERSUS OSCILLATION AMPLITUDE

112



80
60
40 f | H
i E | HH
8 20 :
e :
2 0
-
t 51
a -20. 3
= :
< L %
& -40
|
o
-60
-80 INITIAL CONDITIONS
- ROLL = 0°
-100"° PITCH = 30°
. YAW = 0° |
ANGULAR RATE = O (INERTIAL)
0 10,000 20,000 30,000 40,000 50,000
o TIME (SECS.) |
88-1i980

Figure 30 PLOT OF PITCH OSCILLATION VERSUS TIME

113



(930) 3NVId TVLigd0
3HL OL TVINYON 3HL ONV SIXV HOLid 3LIT7131VS N3IMLIE ITONY 1€ 3By

¢-0T XJ3S  3NIL 16611-69
149 4 ot 8 9 b r4 0 0
30 INO: H
EEEE™ y11980 = 31 VY AV INONVHEHEE
X 1 T O.H = ;<> i 12 Noo
: HHH ,0= HOLId JHEH
i FEEEHEH o0 = 17708 *NOLLIGNOD TVILINI fie
it { j i
- I 3 $°0
Amngl ! }
4 ._ ; } 9°0
} f X i Y
8°0
Sas) it mw m t S 00T

114

‘930 3NVId TVLIGH0 JHL OL TTVINYON JHL
GNV SIXV HOlId 31177731VS N33ML39 379NV



(930 INVYId TVLI¥0
3HL 01 TVWYON 3HL ANV SIXV HOLId 3LI113LvS NIIMLIY TNV 2¢€ aanbly

¢-0T X023  3WIL saen-e9
91 141 2t ot 8 14 0.
11930 INO e
: VLIGN0 = 3LVY ¥VININY
o0 = MVA z
o0= HOLld b
n oI =7708 *SNOLLIGNOD TVILINI
: e 8
¥ i i
21

e}
-4

INVId TVLIGH0 3HL 01 TYINYON JHL
ANV SIXV HOLlid 3L1717131VS N33ML3g JTINY

93d

115



where Q, is the mean orbital rate defined by the relation:

e - (£ (7-20)

a is the orbital semi-major axis; e the orbital eccentricity, and ¢ is
time measured from the moment of perigee passage. At t =0, the
vehicle rate with respect to inertial space is:

. 2 :
Q+6=0 (1+2e +__._f_...._._) (7-21)

3cos2a~1

to first order ine. A vehicle initially aligned with the local vertical
at perigee and rotating inertially with the above rate would then be
expected to exhibit a sinusoidal pitch motion of orbital period and, for
a = 30 degrees, amplitude equal to 4 ¢ in radians. Figure 33 shows
excellent agreement with anticipated results for low values of eccen-
tricity. At higher values of eccentricity, the oscillation becomes
slightly less symmetric due to terms in higher powers of e. For a
value of e equal to 0.1, the motion is unstable, as shown in figure 34.
This instability is in agreement with results obtained by DeBral3 which
indicate an eccentricity of approximately 0,05 to be marginally stable
for a body of the nominal RAE inertia ratios. ‘

7.2 PRELIMINARY RESULTS FROM ANALOG SIMULATION

7.2.1 Geometry of Cantilever Simulation. -- Consider the geometry of the

deflected cantilever beam simulation shown in the following sketch:

13 DeBra, D.B., The Large Attitude Motions and Stability, Due to Gravity, of a Satellite with Passive Damping in an
Orbit of Arbitraty Eccentricity about an Oblate Body, Ph.D. Thesis, Division of Engineering Mechanics, Stanford
University (June 1962).
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The external forces f, are applied perpendicular to the respective
base lines as illustrated, The effective spring constant of each bend-
ing section is:

El
= — 7-22
k=~ ( )

where Al is the distance between mass elements., It can then be shown
that the following relations describe the slope B35 of the second base-
line, the deflection ws of the fourth mass element measured from the
first baseline, and the deflection wg of the last mass element measured
from the second baseline:

Al? : |
Bs.s = —E-[lsf8+ 15 £y + 12 f6+9f,+6f4+3f3+‘f2] (7-23)

AL3 T -
vy —é-l-[38f8+32f7+26f6+20f5+14i4+sf3+3i2] (7-24)

ALl
wg -;I-"[SOf8+20f7+ llf6+4f5] (7-25)

The assumption is made in the derivation of these equations that each
mass element deflects perpendicular to the appropriate baseline; this
assumption, in essence, requires the slope of each beam section to

be small relative to that baseline. From the geometry of the deflected
antenna, it is clear that the deflections of the first mass element and
the antenna tip measured from the first baseline are, respectively:

8 = wy+ 4Al sin B35 + wgcos 3¢ , , (7-26)
3 1
8T = W4+4.5_Alsinﬁs.5 +(—;~w8--5- W7) COSBs.S . (7'27)

7.2,2 Static Deflections. -- To check the analog simulation of the canti-
lever beam model, values of B35 , s, wg, and §; were calculated
from equations (7 -23) through (7-26) for the following cases and com-
pared with output from the analog computer: '

Case 1: Constant Applied Force

f = f=08x100b k= 1ws
EI = 13,85 Ib-fe?

Al = 9375 ft
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Calculated Measured
Bs.s 0, 325 rad. 0.313 rad.
7 67.1 ft, 65.3 ft,
wg 31.0 ft. 31,3 ft,
&g 216. 3 ft. 210, 5 ft,
Case 2: Linearly Increasing Applied Force
f, = [2(k-D+1]f k=1t 8
£=0.2x 1075 1b,
EI = 13.85 b — fe.2
A = 93.75 fe.
Calculated Measured
Bs.s 0.0938 rad. 0.0901 rad.
wy 19. 0 ft. 18.3 ft,
wg 10. 3 ft. 10.0 ft.
&g 64,5 ft. 62.7 ft.

The results indicate the analog output to be within a few percent
of the calculated values, though generally a little on the low side.

7.2.3 Static Gravity Gradient Deflections. -- To check the analog simula-
tion of the gravity gradient field, the static tip deflection was calculated
using equation (7 -27) and the analog output of /33. » Wy » Wy, and wg
for the following antenna properties and half-angles:

Case 3: EI = 10,0 1b-ft2

p = 0.529 x 107 slug/te. (0.017 Ib/ke.)

a = 22.5°

Al = 93.75 fr.
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Measured Results

Bys = 0.1851 rad.
w, = 36.0ft.
wy = 14.3 ft.
wg = 20.8 ft.
5, = 138t
Case 4: El = 13,85 lb-ft2
p = 0,482 x 10~3 glug/ft. (0.0155 1b/ft.)
a = 30°
Al = 93,75 ft,

Measured Results

B;s = 0.2020 rad.
w, = 4L.2 ft.

wy, = 17.5 ft,

wg = 25,2 ft.,
8T = 154, 2 ft.

The tip deflection of 138 feet for case 3 compares with a value of ap-
proximately 140 feet obtained by Flatley in reference 14 for the same
case. -The close agreement indicates that calculating the gravity
gradient forces at the deflected positions of the mass elements and
taking the force components normal to the deflected baseline for the
vouter elements are sufficient to account for the non-linear nature of

 the problem. The inadequacy of evaluating gravity gradient forces at
the undeformed beam position, as in a strictly linear analysis (yield-
ing a 260 -foot tip deflection), is thus confirmed, In addition, the
effect of axial forces and tension within the beam seems to be taken
sufficiently into account by evaluating force components normal to the
setondary baseline for the outer mass elements,

: “Fluliy.T.W., Equilibrium Shape of an Array of Long, Elastic Structural Membéfs in Circulat Orbit, Master’s Thesis,
School of Enginearing and Architecture, Catholic University of America, Washington, D.C. (April 1965).
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Case 4 represents the static tip deflection for the nominal antenna
parameters and vee angle used in this study.

.4 Oscillation Frequencies in the Gravity Gradient Field. -- To check
the dynamics of the analog simulation, a number of cases have been
run to measure the frequencies of the fundamental modes of oscilla-~
tion. For a number of cases the exact frequency cannot be hand-cal-~
culated, but is known qualitatively relative to the value for a simpler
case. All cases are run for the nominal design parameters:

a = 30 degrees
El = 13,85 slug-ft,2
p = 0.482 x 1073 slug/st.

l

750 feet

Case 5: Fundamental Cantilever Period. -- Setting the gravity grad-
ient forces to zero and allowing the antennas to oscillate sym-
metrically so as not to excite central body motion results in an
oscillation period of 5900 seconds. The exact fundamental can-
tilever period is 5930 seconds for the continuous beam, and 5870
seconds for the eight-element lumped-mass approximation (see
appendix E). The cantilever dynamics are thus simulated accurately
by the analog model.

Case 6: Symmetric Bending Period. -- Rerunning case 5 with the in-
clusion of gravity-gradient forces results in a symmetric bending
period of 4950 seconds, It is known that the gravity gradient acts
effectively to stiffen the antennas about their equilibrium position
and thus to increase the symmetric frequency; a simple linearized
analysis to include the effective increase in stiffness due to gravity
gradient yields a reduced bending period of 4990 seconds. The
measured value agrees with the calculated value within the expec-
ted accuracy of the latter.

Case 7: Small-Angle Libration Period. -- The small-angle libration
period of the satellite with the antennas deflected initially in their
static equilibrium positions is measured to be 9500 seconds. The
exact period for the rigid satellite having a = 30 degrees is 11,200
seconds. It is to be expected that the period will decrease for the
flexible body since gravity gradient tip deflections reduce the ef-
fective half-angle of the antenna vee. The 9500 -second period
corresponds to an effective half angle of 23.2 degrees, which
seems reasonable for the 154-foot tip deflections.
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Case 8: Antisymmetric Bending Period. -- The antisymmetric or
"jitter' mode of satellite oscillation is that in which the antennas
all bend in the same direction, similar to the vanes of a pin-wheel,
while the central body rotates in the opposite direction. The
measured period is 1330 seconds. The expected period should be
close to that of a hinged -free beam without gravity gradient, since
the central body at the beam roots has relatively little moment of
inertia, and the beam does not, on the average, move significantly
in the gravity-gradient field. The period of a hinged-free beam
having the nominal antenna properties is 0.2286 times the funda-
mental cantilever period, or 1355 seconds.

In summary, the analog computer program seems to simulate the
static and dynamic behavior of the satellite and flexible antennas
to a very reasonable degree of accuracy.
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CONCLUSIONS AND RECOMMENDATIONS

SUMMARY OF RESULTS. -- The development of system equations and
analog and digital computer programs for the dynamics analysis of the
RAE satellite has been described in detail in sections 3, 4, and 5. Sec-

tion

6 deals with the development of a suitable darhper/control system

model, and section 7 presents a complete discussion of check cases and
preliminary results obtained from the computer programs. A brief sum-
mary of the capabilities and results of these programs and studies follows.

8. 1.

1 Analog Computer Program. -- The analog program simulates the
planar dynamics of the RAE in a circular orbit under the influence of
the Earth's gravitational gradient field. The two pairs of diametrically
opposed antennas are simulated by two lumped -parameter boom models;
deployment is simulated by a switching technique that switches in suc-
cessive mass elements as they extend from the central hub; a simple
control system is represented by torquing at the central hub. A visual
display technique has been developed to permit continuous observation
of satellite motions. Check cases have been run successfully for static
tip deflections of the antennas and for frequencies of libration, sym-
metric antenna bending, and asymmetric antenna bending.

.2 Rigid-Body Digital Computer Program. -- The rigid-body digital’

program simulates large -angle, three-dimensional motion of the rigid
satellite under the influence of the Earth's gravity -gradient field., The

. capability for using either a Keplerian orbital ephemeris or a tape -

generated N-body ephemeris is provided; the direction of the Earth-
Sun line relative to the orbit is calculated in both ephemeris routines.
In addition, both direction cosine and quaternion integration routines
for rotational dynamics are furnished with comparative results for
speed and accuracy. Check cases have been run successfully for
planar libration periods and amplitudes, for small-angle, three-dim-
ensional oscillations, and for the forced planar libration amplitude
due to orbital eccentricity.

3 Flexible -Body Digital Computer Program. -- The flexible-body
digital program simulates large -angle, three-dimensional motion of

‘the flexible satellite in a Keplerian orbit under the influence of the

gravitational gradient, solar radiation pressure, thermal bending,

and orbital eccentricity. Deflections of the antennas in two perpen-
dicular directions normal to their undeformed axes are represented

by seri€és expansions in the small -deflection cantilever mode shapes.
The direction of the Sun-line and the visible fraction of the solar disc
during occulation are calculated analytically., Structural damping is
included as a velocity-dependent term in the generalized beam-bending
equations., At the writing of this report, test cases were being run

for program debugging and checkout; no results are currently available.
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8.1.4 Damper System Studies. -- On the basis of a review of current
damping concepts applicable to gravity-gradient stabilized satellites,
a passive magnetic hysteresis damper of the TRW Systems type has
been chosen for investigation in conjunction with the RAE dynamics
study. This damper, consisting of an auxiliary pair of opposed booms,
has 1 rotary degree of freedom relative to the satellite central hub.
Skewing the booms out of the satellite antenna plane provides damping
about all three satellite axes; relative motion of the two bodies is
damped by magnetic hysteresis,

8.2 RECOMMENDATIONS FOR FUTURE WORK. --1Itis recommended that
future investigation of RAE dynamics be carried out in three general areas:
(a) improvement of the accuracy and capability of the computer simulations;
(b) determination of the significance of additional higher -order terms; and
(c) evaluation of the satellite/control system dynamics, damping require-
ments, and overall satellite design.

8.2.1 Program Modifications, -- The flexible-body digital simulation
should first be modified to include the dynamics of the cross -orbit
dipole antennas, and the additional terms describing antenna deploy -
ment. Higher order terms in the generalized beam coordinates
should then also be added. These terms arise from two sources,
non-linear strain energy and axial motion of a point on an antenna;
both are related to large deformations, Further, terms describing-
torsion of the antenna rods as well as higher order terms generated
in the evaluation of solar pressure and thermal bending at the deformed
antenna positions should be included. Finally, any necessary program
modifications to simulate an appropriate damper model should be made.

8.2.2 Significance of Higher Order Terms. -- For the purpose of reduc-
ing running time and cost of the flexible -body digital program to the
lowest value consistent with desired accuracy of the dynamics simula-
tion, it is essential that a study be conducted to evaluate the relative
significance of higher order terms. This study in essence involves
determining the importance of non-linear strain energy and axial
motion of the antennas, higher bending modes of the antennas, more
accurate calculation of generalized forces associated with solar pres-
sure and thermal bending, and higher harmonics in the expansion of
the Earth's gravitational field, The last item is applicable to the
rigid-body digital simulation as well,

8.2.3 Evaluations and Parametric Studies. -- In keeping with the primary
purpose of the RAE dynamics study, it is recommended that the de-
veloped computer programs be used for the following investigations:
evaluation of deployment techniques, determination of satellite damp-
ing and control requirements, evaluation of the performance of candidate
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damper and control systems, and performance of studies to assess the
effects of various parameter changes, These parameters should in-
clude (a) satellite configuration design parameters, (b) antenna struc-
tural and thermal parameters, (c) orbital parameters, and (d) initial
conditions prior to deployment. Items (a) through (c) are essential for
a thorough study of the solar shock problem and long-term stability,
and (c) and (d) for a study of the effects of errors in orbital injection
and pre -deployment attitude control.
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APPENDIX A

MATHEMATICAL MODEL FOR STRUCTURAL DAMPING

The mathematical model for structural hysteresis damping that has been incor-
porated in the flexible beam equations is discussed at some length in reference
1. The model is developed as follows.

The familiar Bernoulli-Euler equation for small-deflection dynamics of a uni-
form beam is

0%u
6411 + p 3 = f(z,t) (A-l)
3z4 at

EI

where E is Young's modulus, I the beam cross-sectional inertia, p the mass per
unit length, v the deflection normal to the undeformed baseline, f the external
force per unit length normal to the baseline, z the distance along the baseline,
-and t time. In 1927, Sezawa proposed a modification to the Bernoulli-Euler
equation based on the assumption that material in the beam follows Stokes' law
of viscosity, namely, that stress is a linear function of strain and strain-rate:

o =Ee+Ce (A-2)

where o is stress, ¢ is axial strain, and C a coefficient of viscosity, Equation

dJ
(A-1) is modified in accordance with Stokes® law by replacing Eby E+ C 3 the
result being Sezawa's equation: ‘

a4y P 92
+ CI - +p — f(z,t) (A-3)
3 24 az4a¢ 9e2

El

The deflection u is expanded in terms of the orthogonal natural modes x (z) of
the freely vibrating beam:

u(ze) = z Ay (®) X, (2). (A-4)

n

Substithtihg expression (A-4) into equation (A-3), multiplying through by x(z),
integrating from z = 0 to z = !, and applying orthogonality of the modes yields,
finally, '

) FYT )
Mindlin, R. D., F. V. Stubner and H, L. Cooper,Response of Damped Elastic Systems to Transient Disturbances, Pro-
ceedings of the Society for Experimental Stress Analysis, V, No. II, pp. 69-87(1948),



l
wl+Awll - / Xn(z) E(z0)dz . (A-5)

o]

plxca [ Ay + Ay

ml0

Equé,tion (A-5) is the second-order generalized beam equation for the coefficient
of the nth natural mode shape. The modal constant pl X qi8 simply the gener-
alized mass,

l
Pl Ren .=/ x 2 (2) pdz (A-6)

L]

and o, is the natural frequency of the nth mode. If follows from equation (A-5)
that the damping ratio {, (fraction of critical damping) for the ath mode is pro-
portional to the natural frequency of the mode when C is constant:

Co,

2E

o = ’ (A-7)

Nevertheless, experimental evidence cited in references 1 through 3 indicates
that the fraction of critical damping is nearly independent of frequency. Most
structural materials do not follow Stokes' law based on a constant value of C;
ingtead, the viscosity coefficient is to a first approximation inversely propor-
tional to frequency. Much closer agreement with experiment is obtained by as-
suming -- after going through the mathematics leading up to equation (A-5) -~
that

Cay
= constant. (A-8)

Cow
E

1
E Q

This assumption, designated the 'constant Q hypothesis' in reference 3, clearly
implies that '

¢y = ¢ = constant {A-9)

for all modes and frequencies of oscillation.

ZWegel, R. L., and H, Walther, Internal Dissipation in Solide for Small Cyclic Strains, Physics, 6_. p. 141 (1935).

3Kimb’all, A, L., Vibration Problems, Part V == Friction and Internal Damping, A.S.M.E., Journal of Applied Mechanics
Reprint Series, Book 2, Design Data on Mechanics, p. A~22 (May, 1944),



Damping is incorporated in the flexible beam equations for the generalized coor-
dinates A, and B, in the terms D A, and D B, . These equations are essen-
tially the same as equation (A-5) of this section, with the addition of inertial
terms corresponding to translation and rotation of the baseline in inertial space,
and axial terms related to tension in the beam. The damping coefficient D, is

seen from equations (A-5) and (A-7) to be
=26, 0, pl Xen - (A-10)

Structural damping does not enter directly into the translation and rotational
equations of motion for the satellite as a whole, Employing alternately the
dimensionless parameter

. pl4 wg /4 -
ky =\—"""— (A-11)

from which o, is determined, the damping coefficient is

- = El :
Dy =2 &y pl Xep K4 -~ (A-12)
[

The actual value of ¢, used in the digital simulation of the satellite may be varied
for different modes if desired. However, until further test data on the deHavilland
tubes should indicate otherwisge, {, will be assumed constant at the value { =
0.00366, corresponding to a log decrement of 5 = 0,023 per cycle,

‘It should be added in passing that the assumption of a constant structural damp-
ing ratio for the lower-frequency bending modes is commonly employed in the
analysis of flexible boosters for automatic control system design, as in refer-
ence 4. Damping will generally be higher for high-frequency modes, however,
because of coulomb friction between moving parts. Coulomb friction is, of
course, probable within the overlapped seam of the deHavilland tubes used for
the RAE antennas.

4!..ukenex, D. R., A. F. Schnmitt, and A. J. Broucek, Approximate Transfer Fuactions for Flexlble-Boostet-and-Autopllot
Analysis, Convair (Asttonautxcs) Report No. AE31-0198 WADD TR-61-93 (April 1961).
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APPENDIX B

RELATIVE CONTRIBUTIONS OF BEAM BENDING MODES
TO STATIC TIP DEFLECTION

The small-deflection beam equation for planar motion of a uniform beam is
a4 a2

u(z,t) + p

az4 92

El u(zt) = f(z,t) (B-1)

where E is Young's modulus, I the cross-sectional inertia, p the mass per unit
length, u the deflection normal to an undeformed baseline, f the external force
per unit length, z distance along the baseline, and t time. The deflection u is
written as a series expansion in the natural mode shapes yx, (2)

u(z,t) = 2 AL (D) Xxq(2) (B=-2)
" on

Due to orthogonality of the natural modes, equation (B-1) can be reduced to a
set of uncoupled, ordinary, second-order differential equations in A :

PlXen Ky + 02 A = Q® (B-3)

where o, is the natural frequency of the ah mode, and plXc,and Qn(t) are,
respectively, the generalized mass and force associated with the nt? mode:

l

PLlXen =/ x2 (2) pdz (B-4

o

l
Q, ® =/ Xp (2) £ (z,0) dz . (B-5)

o]

The natural frequency o _is obtained from the relation

0l = kD4 (B-6)

plt

where | is the length of the beam. The static value of the modal coefficient A;
for a steady applied force is clearly

B-1



Qn
Aﬂ = -—3—-——-——- . (B-")
o PlXen

If x, () is normalized such that x, (I) = 1.0, then A, is simply the tip deflec~
tion contributed by the 2P mode. The relative tip deflection with respect to
that of the first mode is then '

Ay “’% X1 @

A1 wtzl icn Ql

’ (B-8)

For a cantilevér beam clamped at Z = 0, the natural mode shapes are
Xqa(2) = Cy, (sink,z - sinhk;2) + Cy, (cos kn? - coshk,,) (B-9)
where k, is a solution to the equation
cos ky Il coshk,l = -1 (B=10)

and the coefficients C,, and C,, are
cosh k, !l + cos ky i

Cin = (B-11)

2(sink, I cosh k,! ~ cosk, lsinh knl)

‘ sinhk, ! + sink,! {(B~12)
C2a= - 2(sink, I coshk, ! ~ cosk, ! sinhk,l)

The values (B-11) and (B-12) have been chosen such that x,(l) = 1,0, Itcan
next be shown that, using these relations, the generalized mass for each mode
is the same:

Pi R, = - P ' (B~13)

Using relations (B-6) and (B-13), equé.tipn {B-8) reduces to
4
Aq . (kg 1) Q ) : : (B-14)
AL bt

It is of interest to evaluate Q, for a constant external force per unit length, and
for a linearly increasing force per unit length, The first corresponds, for
example, to solar pressure acting on the undeformed antenna, and the segeond
to a gravity gradient force distribution acting on the same.



1. Constant External Force Per Unit Leng_t_h

Let f(z) = K,. Then the nth generalized force is
J
Q, =/ K)y xXq (22dz
/ ;
P 1 (B-15)
= K1 - Cin
k1

where K, is a constant independent of the mode. Hence the relative tip deflec-
tion is

A gD’ g .
—— e ) (B-16)
Ay &k, )3 Cn
2. Linearly Increasing External Force Per Unit Length
Let f(z) = K, z. Then the oth generalized force is
l
Qp = / K, z X, (z) dz
o
(B-17)
=7 Kz’ : Con
(k, 2

where, again, Kj is a constant independent of the mode. The relative tip
deflection is then ‘

6 C
_'}_“_. - g‘.‘.ﬂ. .tin_ A (B-18)

The values of k; I, C; , C2p, and A, /A; for the first six natural modes are
summarized in the following table:



Ay

: Relative Tip Deflection

A
n kq Cia Con =K b= Ky,
1 | 1.875 0.36703 -0. 50001 1.000 1. 000
2 | 4.694 -0. 50920 0.49996 0,01411 0. 004061
3 | 7.855 0. 49961 ~0. 50000 0.001054 0.0001850
4 | 10.996 -0. 50002 0.50000 0.0001963 0.00002458
5 | 14.137 0. 50000 -0.50000 0. 00005588 0.000005443
6 |17.279 -0. 50000 0. 50000 0. 00002049 0.000001632

It is evident that for the two external force distributions considered, only the
first natural mode is significant; higher modal contributions converge rapidly

toward zero,




APPENDIX C

RIGID BODY DIGITAL COMPUTER PROGRAM
(PROGRAM 1048)

1. PROGRAM STRUCTURE AND DESCRIPTION

Presented herein is a brief description of the general logic flow in program
1048. Figure C-1 illustrates the general flow between the various subroutines
of the program. Auxiliary subprograms, such as those requested from the
system tape, plus others which perform routine tasks, have been deleted from
the diagram. Program 1048 contains several significant features which include
flexibility in the input-output routines, selection of running mode at time of ex-
ecution, and a generalized check-stop routine. Other features include the pre-
setting of commonly used quantities in order to reduce the amount of input, a
generalized integration routine using a 4-point predictor -corrector scheme,
and a selection of methods for computing body orientation.

The input subroutine HGLNAM allows data to be read in a very simple and flex-
ible manner, while also permitting such refinements as the computation of sim-
ple arithmetic operations at input time. The output routine also provides con-
siderable flexibility in that any variable in COMM®ON may be printed out with
input controllable format. The check-stop routine, called CHECKS, allows

any two quantities in CQMMQ@N storage to be compared, and if the comparison
is favorable for a stop, a control word is reset and the program control returns
to MAIN to request new data. The integration routine, ADMS4, utilizes updating
criteria and bounded error intervals for the integrand on any given time step in
addition to the 4 -point predictor -corrector scheme mentioned above. This en-
sures an accurate numerical evaluation of the equations of motion. Additional
features contained in 1048 are discussed in the program description following,
and the reader is referred to this section of the manuscript for details,

Entry to the program is made through MAIN which directs the flow as indicated.
MAIN calls PRESET, INPUT, ETP, CONVIN, and TABSET, which perform
calculations necessary to prepare the program for execution. PRESET pre-
sets a series of control words and tables, hence avoiding the necessity of
reading these in as part of theinput. ETP makes provision for the running of
sequential cases and also the stacking of sequential cases, CONVIN allows

the reading in of input in three different forms. TABSET prepares a set of
tables which are used later in the program.

After passing through MAIN, control is transferred to EXEC. EXEC calls
NQINTP, ADMS4, CHECKS, CGMPEX, and OUTPUT. This combination of
subroutines controls the program from this point on, until a stop is determined.
NQ@INTP is a table look -up with no interpolation. ADMS4 performs the integra-
tion of the differential equations in addition to calling the remainder of the
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subroutines. CHECKS is a subroutine which may stop the program when con-
ditions so specify. COMPEX calculates specific quantities which may be printed
as part of the output, QUTPUT is the variable format printing routine,

ADMS4 calls SUBS which then calls the remainder of the subroutines, These
subroutines under SUBS in figure C-1 set up the form of, and supply numerical
values to, the derivative equations for the motion of the rotating body.

I1I. SUBROUTINE DESCRIPTIONS

1. Introduction

The RAE digital computer program 1048 is presented as a complex of sub-
routines under the control of two separate calling subroutines, specifically
the two program control blocks called (MAIN) and (EXEC).  The primary
purpose of (MAIN) is to prepare the remainder of the program for running.
Control is then transferred to (EXEC) where the actual numerical quantities
of interest are generated. Control remains within the (EXEC) combination
of subprograms until a stop is determined and at this point return is made
back to (MAIN). A decision between exiting or reading new data is made
at this time in (MAIN). The outline presented below lists the primary sub-
routines used in the (MAIN) and (EXEC) blocks. Subsequent discussion of
the various subprograms will occur in the order shown,

A. (MAIN)
1. PRESET
2. INPUT - HOLNAM
3. ETP
4. C@NVIN
5. TABSET
B. (EXECQC)
1. N@INTP
2. ADMS4
a. SUBS
1. XCB2 - XCB3 - XCB4 - XCBS5
2. AFMRIS
3. CFMRIS
4. GGRAD
5. @OCB3
6. CMB3
7. MSB3
8. ITB3



9. MIB3
10. PCB2 - PCB3 - PCB4

b. CHECKS
c. COMPEX
~d. OUTPUT

2. (MAIN)

The purpose of (MAIN) is to prepare completely the remainder of the pro-
gram for proper execution. Initial entry to (MAIN) erases all of the
COMMON storage, hence avoiding any problems due to information being
retained from previous jobs, The remainder of (MAIN) consists of a series
of ""calling'' statements which transfer control to the following subroutines:

a, PRESET
b. INPUT
c. ETP

d. CONVIN
e. TABSET

A description of these subprograms follows.
3. PRESET

This subroutine performs the following operations upon entry to the pro-
gram:

1. Gives numerical values to control words

2. Presents commonly used variables, hence reducing the amount
of input

3. Utilizes Boolean statements to suppress the printing of unnecessary
zeros during output

4. Sets the prescribed upper and lower bounds used in the integrating
routine

5. Establishes the suggested numerical values for updating

6. Prepares a table of common locations used for the storage of
input for sequential cases,



PRESET is an auxiliary block which may be deleted; however the amount
of input data would increase by several orders of magnitude if this were
done. This fact alone justifies the existence of such a subprogram.

4. INPUT

This subroutine initiates the reading of data into the program. Subroutine
INPUT is used in conjunction with HOQLNAM where HOLNAM sets up the
variable input text. An example of a typical input sequence is illustrated
below.

CALL HQLNAM (2ZHYY, XX)
CALL INPUT (I).

Upon processing the "CALL INPUT" statement, the value associated with
"YY'" in the DATA deck is stored in the location set aside for "XX'" in the
(MAIN) program. For convenience, all of the variable names in HOLNAM
statements have been placed in COMM®N storage by means of EQUIVALENCE
statements. Calling INPUT initiates the reading of sequential data until a
transfer card is processed. (A transfer card has a one in column one. )

At the end of any given case, return to MAIN generally means processing

the next "CALL INPUT'" statement. In this manner, sequential cases may

be run until an "END -QF -J@B!" card occurs in the data deck, hence termin-
ating the job.

5. ETP

Subroutine ETP performs four basic tasks. The first is to reset the con-
trol variables necessary to begin a new case. The second is to store the
initial input variables so that sequential cases may be run without repeat-
ing all of the data in the "DATA DECK." The third is to provide an option
to stop the program at some point, read additional data, and then continue
with the running of the program using this point as the start of the next case.
This mode of operation will henceforth be referred to as '"stacking." The
fourth allows the branching of sequential cases from any given stopping
point.

Figure C -2 illustrates the basic logic flow in subroutine ETP. The first
entry into ETP finds III = 1 and ST2 = 0, as these are the values assigned
to III and ST2 in the PRESET subprogram. Following the flow in figure

C-1 we see that the initial conditions are stored and the two control words,
II and ST2, are recalculated. In this case III is given the value of 2 and
ST2 is equated to STACK. Referring to (MAIN) we see that ETP is called
again after returning from (EXEC). This indicates that a stop has occurred
which generally is the end of a given case. Since IIl is now 2, a check on
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STACK occurs, If stack is zero, the initial conditions from the present
data set are reassigned to the running variables. However, if STACK is
one (1), this assign condition is bypassed and the end conditions of the
present case remain in the COMMON locations of the running variables.
In effect, the latter procedure simply allows the next case to be started
where the last case stopped. Beforeexiting from ETP, IIl is set equal to
1, and ST2 is equated to STACK, along with resetting several control
words. Referring again to (MAIN), we see that INPUT is called before
entering ETP again. Reading input at this point allows the initial condi-
tions to be changed by writing over the values set up in ETP. The flow
logic in ETP, before control transfers to (EXEC), is now controlled by
ST2, as III was equated to 1 before the previous exit. Since ST2 has the
value of STACK, we see that the storage of initial conditions is bypassed
if STACK was one (1.) on the previous case, hence indicating the storage
of the final conditions. If STACK were zero (0.) in the previous case, the
initial conditions are stored. This sort of flow in and out of ETP continues
until a program stop is determined.

L

6. CONVIN

Subroutine CONVIN allows the input to 1048 to be read into the program in
various forms. At present, the three rotational degrees of freedom are
defined by the direction cosine matrix locating the inertial axes with respect
to the body reference frame. In order to utilize a more convenient set of
input quantities, subroutine CONVIN has been generated, The initial values
for the rotational degrees of freedom may be read in under three modes.
The first method is given by:

PB = the initial rotation rate about the body x axis
QB = the initial rotation rate about the body y axis
RB = the initial rotation rate about the body z axis
C = a matrix containing the nine elenﬂents of the transformation

between the body and inertial axes, This matrix is read in
row-wise as a one-dimensional array.

The above quantities are the running variables for the rotational motion in
1048.

The second method of producing the initial conditions for the rotational
motion is by an Euler angle transformation. The initial body rates (PB,
QB and RB) must still be used, except now the array EULER and the word
INERT2 generate the '"C" matrix in CONVIN, The correct format is:

C-7



EULER I. B. J. D. K. F,.
INERT 2 2
where I, J and K are fixed point integers defining the axes of rotation, and
1 is rotation about the x axis
2 is rotation about the y axis
3 is rotation about the z axis

The values B, D,and F are the angular rotations about the I, J, and K

axes, respectively. Note that the sequence of the rotations must allow the
inertial axes to be rotated into the body axes; moreover, each rotation is
performed about the most recent direction of the axis in question. INERT2 =
2 permits the generation of this transformation.

A third input option is available as input for the rotational motion. This
consists of a local orthogonal coordinate system defined by the satellite
position vector, a vector perpendicular to the position vector in the orbital
plane containing the position and velocity vectors, and a third vector de-
fined by the vector product of the first two. Reading in the control word
INERT2 = 3 automatically defines the above system. The location of the
body axes with respect to this local system is then read in according to the
following words:

ALFAE, BETAE and GAMAE,

These three angles (in degrees) define a 3-2-1 Euler rotation of the local
coordinate system into the body axes. C@NVIN then uses the two systems
described above to determine the C matrix for program execution. Again,
the body angular rates must be suppliéd in the form previously described.
A block diagram is presented in figure C-3 showing the logic flow in CON-
VIN.

7. TABSET

The purpose of TABSET is primarily to prepare a set of tables which are
used in conjunction with the integrating routine (ADMS4) and the derivative
calculating subroutines. For the three-degree-of -freedom simulation,
various combinations of derivatives are used in the analysis., That is, one
may integrate the derivatives of the quaternions or the direction cosines,
In addition, it is possible to integrate either six or nine direction cosine
derivatives. One of these three systems must be chosen at the time of
input to the program. In order to allow the flexibility of using the various
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methods, the subprogram TABSET has been generated. Control within
TABSET is accomplished by the word KD. Depending upon the value of
KD, which may range from 1 to 4, the following derivatives will be used.

If KD = 1, set up the integral and derivative tables for the body rate vector
only., If KD = 2, prepare the integral and derivative tables for the six
direction cosines plus the body rate vector. If KD = 3, set up the integral
and derivative tables for the four quaternions plus the body rate vector.
Finally, if KD = 4, the derivative and integral tables for the nine direction
cosines are prepared along with the body rate vector. The FORTRAN sym-
bols used in TABSET are defined below:

1. KDTBL (I) - a table of numbers defining the common locations
containing the values of the derivatives.

2. KITBL (I) - a table of numbers defining the common locations con-
taining the values of the integrals where the Ith location in KITBL is
compatible with the Ith location in KDTBIL.

3. CQONCK (I) - the numerical value of the updating constant. Again,
the Ith value in this table is compatible with the Ith value in KITBL.

4, UPBND (I) and DNBND (I) - the upper and lower bounds utilized in
the integrating routine (ADMS4), These tables are set up in conjunc-
tion with the above arrays; however, the numerical values in UPBND
(I) and DNBND (I) are obtained from either subroutine PRESET or the
input,

TABSET also presents the initial values of SAVE, VALUE, and CONST.
By definition, the proper place to preset these tables is in the subprogram
PRESET; however, these tables cannot be set up until the values in KITBL
are established.

8. (EXEC)

This subroutine controls the complete operation of the program after transfer
from (MAIN). (EXEC) performs the function of determining the derivatives
for the set of differential equations and then integrating these equations
numerically. This task is accomplished in (EXEC) by calling the subpro-
gram ADMS4. The printing frequency is determined in (EXEC) and used in
ADMS4, The table look-up routine called NQINTP performs this task of
finding the print frequency, which is then used in ADMS4 to calculate the
proper time to exit from ADMS4 to print. The printing is done by the sub-
routine called QUTPUT, The printing format is completely variable such
that any quantity in CQMM®N storage may be typed out. In addition,
Hollerith text (up to 6 characters per word) may be printed by QUTPUT.
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(EXEC) also calls a subroutine named CHECKS. The primary function of
this routine is to determine the stopping point during the running of the
program. This subroutine will check any two numbers in COMMON storage,
and when the comparison between the two numbers indicates that a stop
should occur, CHECKS resets the control work ISTOP to initiate an exit

in (EXEC),

The subprograms NQINTP, ADMS4, CHECKS, and QUTPUT will be dis-
cussed in detail later. A brief flow diagram of (EXEC) is shown in figure
C-4, Control in (EXEC) is accomplished by two control words, LLADM

and ISTQP, When LADM has the value of one, this indicates to the pro-
gram that it is the first pass through ADMS4, Once integration begins,
LADM obtains values of 2 through 6, which are assigned according to the
flow in ADMS4. However, if LADM = 6, this indicates that the interval

of integration has been made too small and an abnormal exit through (EXEC)
occurs. When a normal stop has been found by CHECKS or ADMS4, ISTQP
is set equal to one. This indicates to (EXEC) that a normal exit to (MAIN)
is in order.

9. NOQINTP

This subroutine is used in conjunction with (EXEC) as a no-interpolation
table search. The calling sequence for NOINTP as it appears in (EXEC)
is as follows:

CALL NQINTP (CD(IFRQ), VFQTBL, FREQ, FRQTBL).
In most cases the print frequency (FREQ) will be determined by time;

however, practically any other physical quantity in COMM®N storage may
be used. The arguments in the calling sequence are defined below:

VFQTBL a table of numbers having the same units as CD(IFRQ),

where VFQTBL (MIN) < CD(IFRQ) < VFQTBL(MAX)
CD(IFRQ) = the instantaneous value of CD used in the VFQTBL search.
In most cases, CD(IFRQ) will be time; hence IFRQ=595
must be part of the input.
FRQTBL = a table of numbers representing the various print fre-
quencies being used. For each number in VFQTBL

there must be a corresponding number of FRQTBL.

FREQ = the print frequency interval,
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ENTRY

|

CALL
NOINTP

'

1F
LADM =

2-6

CALL
ADMS 4

IF
LADM =

3.4,
]

18TOP

Jz,s

CALL
CHECKS

!

IF
ISTOP =

10

Y

RETURN
')

IF
ISTOP =

95-0140

IF
LADM =

P
2-6

CALL
COMPEX

1

Figure C-4 FLOW CHART OF EXEC
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10. ADMS4

A four point Adams integration scheme is used to evaluate the differential
equations. The first four points required to start the scheme are calculated
by using a Runge Kutta method with a fixed time increment DT0. Once the
first four time steps have been evaluated and the integration switches to

the Adams method, the time increment is internally controlled by comparing
the difference between the extrapolated and the interpolated values of the
integrands (a measure of the integration accuracy) with upper and lower
bounds (preset or input controlled) and decreasing or increasing the time
increment according to whether the error is too large or too small (thus
unnecessarily increasing the running time)respectively. If the accuracy.
restriction cannot be met due to a discontinuity, input error, and so forth,
the subroutine will attempt to cut the increment until it becomes less than
DELMIT (preset or input controlled) at which time it will stop with the
control word LADM = 6, ADMS4 calls the subroutine SUBS in order for
SUBS, in turn, to call the necessary derivative evaluations. The COMMON
locations of the various derivatives and integrands are controlled by KDTBL
(a table specifying where the evaluated derivatives are located) and KITBL
{a table specifying where the updated values of the integrals should be
stored).

Accuracy is improved (specifically, truncation error is reduced) by means
of an automatic updating routine, If the integrand of a particular variable
has a large value but is only slowly varying, the amount truncated from
the integrand increment when it is added to the previous value of the in-
tegrand can seriously affect the accuracy of the result after a number of
integration steps. To reduce this error, the major part of the integrand
is carried separately as a constant. The slowly time-varying part is
allowed to accumulate until it reaches a value specified by CONCK. When
this occurs, the time-varying part is added to the constant part, the
truncation error is determined, and the time-varying part is started over
with the amount which was truncated.

11, SUBS

The purpose of subroutine SUBS is to guide the calling of the proper sub-
programs in order to obtain the derivative equations which are to be in-
tegrated in ADMS4, The logical flow in SUBS is accomplished through

the use of the control words KA, KB, KC, and KD. KA and KD are the
variables which control the calling sequence for the quaternion or direction
cosine derivatives. KD is the same control variable which appeared in
TABSET., The control accomplished by using KD ensures that the deriva-
tives which are obtained will be compatible with the logic flow in TABSET.
KA operates in conjunction with KD, Referring to figure C-5, we notice
that KD controls the calling of the subroutines PCB2, PCB3, and PCB4.
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KA controls the calling of XCB2, XCB3 and XCB4. Control must be such
that XCB2 is called only with PCB2, XCB3 and XCBS5 are called only with
PCB3, and XCB4 is called only with PCB4. KB and KC control the calling

of the remainder of the subroutines. (Refer to figure C-5 for the flow chart.)

12, XCBZ2, XCB3, XCB4, and XCB5

These subroutines are auxiliary blocks which are available to make any -
calculations necessary upon entry into the derivative chain. At the present
time their only function is to complete the direction cosine matrix, norm-
alize the quaternions, etc. Each version of XCB performs different tasks
as explained below.

a. XCB2

This subprogram simply completes the direction cosine matrix when
only 6 direction cosine derivatives are being integrated. Since the
first - two rows of the matrix are obtained from integration, the re -
maining 3 elements are found from the orthogonality condition:

= C13C23 ~ C13Cpy

g]
W
-

§

C33 = C13Cy ~ C11Cy

C33 = C13Cp2 - C12Cx
Symbol Glossary

Equation Fortran COMMON=*
Symbol Comments Symbol Location Input Output
Cs; C) 312 X
The remaining three ele-
Csy ments of the (C) matrix (8) 313
Cs to be calculated c® ‘ 314
o c() 306 X
C12 c(2) 307 '
The six elements of the
08 X
C13 direction cosine matrix c® 3
Cy (C) obtained from integ-~ c(4) 309 X
ration
Cyy C(5) 310 X
c23 C(6) 311 X

*Location inCf array unless otherwise specified.

c-15



'b. XCB3

This subroutine is used in conjunction with the derivative subprogram
for the quaternions, PCB3. Because of the input required by other
routines, it is still necessary to obtain the direction cosine matrix.
XCB3 performs the following calculations:

1) Normalizes the quaternion components from the equation
%

q; = im=0,123
9k
K=0
The above calculation was made in an effort to reduce the error
in the quaternion components, since

3

E qiElo

i=0

2) The components of the direction cosine matrix are calculated
from the new quaternion components by the equation:

(qoz, + qlz) - 1/2 qqy + 9043 9193 — 992 -
@ =21 99 - 99 (@? + ) =12 a3 + 9
9193 + 992 9%~ %% @g? + 52 = 12

where (C) is the direction cosine matrix and the g9,'s (i=0,1,2,3)
are the quaternion components.

Equation Fortran COMMON*
Symbol Comments - Symbol Location Input Output
© The direction cosine  C(1)..C{ 306-315 X
matrix having com-
9 ponents Cij' : QO ‘ 26 X
9 > The integrated quater- Qp 28 X
nion components. _

*Location in CQ® array unless otherwise specified,
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c. XCB4

This subroutine is used in conjunction with PCB4 which prepared the
derivatives for all nine direction cosines. XCB4 normalizes the
direction cosine matrix in row-wise faxhion in an attempt to improve
the accuracy. The equations utilized in XCB4 are:

C.. = Cii i=1,23
1’ 3 2 ’ ? ? .
2 Cu
K=1
Symbol Glossary
Equation Fortran COMMQN 3%
Symbol Comments Symbol Location Input* Output*
Cjj The i, jth component C(I) 306 X X
of the direction cosine

matrix

* Storage of the C matrix back in its original location ensures proper usage
later in the calculations.

#% Location in C® array unless otherwise specified.

d. XCB5

This subprogram is identical to XCB 3 except that the normalization
of the quaternion components has been deleted.

13. AFMRIS

Subroutine AFMRIS computes the instantaneous position of the satellite,
given its initial position and velocity. The instantaneous velocity and the
solar illumination factor are also computed to facilitate the subsequent
consideration of the effects of solar pressure and the Earth's magnetic
field.

In the position and velocity calculation, the angular acceleration of the
orbital plane with respect to inertial space is neglected; however, in the
calculation of the sun line vector the rotation itself is taken into account.
This routine also provides GGRAD with the gravity vector, expressed in
the inertial frame.
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Eg uations:*

-V | -
Vit = 2 C(aoxz) + (1 - rgag) x3 S(aoxz) +px (C-1)
v
E - Eg
x =
Ve
2 Vol
Ay B e o ——
0 ==
/ (VT - sinyDAVD u>0
1 x xz
s(ll)i"a-—;-!-'*--_-’—!-'—...., u %0
(sinh /=1 - V=)/(V=0)3, e <0 (C-2a)
(1 - cosyW)/u , u>0
1 X x2
Clu) = —El- - —5 -6—! - , u=0
(coshy=u - D/(~w) , u<o (C-2b)
2 3 R
o = [1——:—C(aox2)] 7 + [: - S(aoxz)] Yo
% Vi
¥ - 2 ot »
V(t) = l:aox3 S(aoxz)__ x]T\/—’_z_ rg + [1_ :;_ C(aon)] Vo {C-3a,b)

The subroutine FINDX sclves the above equations using a Newton-Raphson
ineration in double precision arithmetic, AFMRIS provides FINDX with

the initial values of time, position, and velocity from which FINDX computes
the orbital elements. Thereafter, once the time is specified, FINDX com-
putes the instantaneous position and velocity according to the following
scheme: Kepler's equation (equation C-1) is solved iteratively for x;
-C(ayx2) and S(azx?) are computed from equations C-2. Equations C-3

are then used to calculate the position and velocity.

T r——— ——————t——

*Battin, R.H., Astronautical Guidance, pp. 51 -~ 52,
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a. Solar Illumination Factor

The vector from the Earth to the Sun is:

g
—

cos (&, + wt) cos [coE(T0 + t)] + sin @, + wt) sin log (T, + t)] cos ¢

- sin (@, + wt) cos lwg (T, + ©)] + cos (R + wt)sin [og (T, + t)] cos ¢

~sin wp (T, + t) sine

where the components of —l)ls are given in a reference frame fixed in
the orbital plane (see sketch below): x is along the ascending node,
z is along the Earth's polar axis, and y is in the Earth's equatorial
plane, completing the orthonormal triad.

z,2'

«

X
we (Tot+ t) ASCENDING NODE

The vector from the vehicle to the Sun is then

-

= -
Rys = Rg — Ry

b. Solar Illumination:

Rsun
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guation
ymbol

A

Ifl-l'lvslglqhsl,sl'l

- -
If |Ryg|> | Rg |

The angles A, B, and C are computed according to the equatiohs,

A = sin”! R, /Ryg)
B= sin-l(Re“th/Rv)
> S > -
C = -Ry : Ryg/|Ry || Rys]

A+B<LC,8 =1
A+ B>C and
A+C<B, §;,=0

Finally, if A + B > C

and A+ C> B,

Sg= 1 - (A28 B%a + BCsina) /27A%

where

B = cos™! [(c? + A2 - B2) / 2aC ]

a= Ag (AsinB/B)

c. Gravity Vector

- l'iV
g8 = -k
| Ryl 3
Symbol Glossary
Program COMMON**
Comments Symbol Location Input

Semi-major axis of satellite orbit XA

Planar angle intercepted by the
Sun i A

C-20

The gravitational acceleration at the vehicle due to a spherical Earth
~ iss ‘
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Equation
Szmbol

All

cos (i)

Symbol Glossary (Cont'd)

Program COMMON**
Comments Symbol Location  Input Qutput
Astronomical unit, the mean
Earth-Sun distance AU 76 X
Planar angle intercepted by
the Earth B
Angle between Ryg and - Ry C
Eccentric anomaly of the vehicle
orbit E
Eccentricity EY
True anomaly F
Cosine of the angle between the
orbital and equatorial planes C@®sI
Semilatus rectum P
Mean radius of the Sun RSUN 73 X
Mean radius of the Earth RE 500 X
Position of the Sun with respect
to the Earth k RS
Position of the vehicle w. r.t.
the Earth RV, RVD#* 300 X
Initial position of the vehicle
w.r,t. the Sun RV0, RVOD* 78 X
Earth-vehicle distance RVM 91 X
Position. of the vehicle w. r.t.
the Sun RVS
Solar illumination factor SIF 77 X
Time T CD(595) X
Time of launch reckoned from
Vernal Equinox TOL 72 X
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<+

“g

.00437

10

1x 1013

Symbol Glossary (Concl'd)

Comments

Time, reckoned from time of
launch

Velocity of the vehicle in an
Earth-centered "inertial" frame

Vehicular speed in the "inertial"
frame

Initial vehicular velocity
sin"! (A sin g/B)

<:<:oe'l(C3Z + A2 -B2)/2AC
Obliquity of the ecliptic
Earth's gravitational constant

Initial longitude of the ascending
node

Mean precessional rate of the
line of nodes = -10.5 (RR/A)
7/2 cosi deg, /day

Earth's mean orbital rate

Largest value of ¢ x2 for which
series expansions are used for
Cla,x2) and 5(a x?)

Maximum number of iterations
permitted

Maximum allowable fractional
error in the time

*Double precision variable
*%Location in CQ array unless otherwise specified.

Program COMMON#*

Symbol Location Input Output
DD

V, VD* 303 X
VM 92 X
V0, VOD* 81 X

ALFA

BETA

EPS 5 X

GMU 501 X

OMEGO 74 X

OMEG X
OMEGE 71 X

AX2CHK X

LCHECK X

TCHECK X
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14. CFMRIS

Subroutine CFMRIS is an ephemeris computation routine which uses a six-
point Bessel interpolation scheme to obtain the inertial components of po-
sition as functions of time. The source data are generated by an independent
N-body (or two-body) trajectory program which describes the motion of the
satellite's center of mass. The source data are written at specified time

intervals on an intermediate tape which is then retained for use in this pro-
gram.,

The six data points used for the interpolation are symmetrically distributed
about the time, t, for which values are sought. For this reason, in order to
permit the initial time, t,, to fall between the 3rd and 4th data points, it

is necessary for t, to be at least two time intervals greater than the initial
time recorded on the ephemeris tape. The Bessel interpolation procedure
is described by the following equations:

At = (t—ts)/(%"ta)

Cl = At -_ 1/2

C2 = 1/2 At (At - 1)
C ¢

C3 = —5—
Cy(At + 1) (Ac-2)

C; =

4 12
C4Cy

CS = 5

1= 2

K3 = ——-———2 -K4

K, = Fs - F) - 3K,

(F6 + Fl)
Ky = ——— -3K3 - K
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K6=F6 —F1+5(K2+K4)

F(t) - Kl + C1K2 + C2K3 + C3K4 + C4K5 + CSKG

where
Fn = nth data point
ty = time corresponding to the nth data point

The interpolation may be performed on a maximum of 20 different quantities.
The first 3 are reserved for the position vector, the next 3 for the satellite~
Sun vector, the next 3 for the total acceleration vector, and the remaining

11 are at the option of the user. The total number of interpolations is in-
dicated by the input word NINT. '

This subroutine also computes the solar illumination factor and the distance
from the satellite to the center of the Earth, The appropriate defining
equations appear in the section describing subroutine AFMRIS (analytic

ephemeris).
Symbol Glossary
Equation Program COMM®ON*
Symbol Comments Symbol Location Input Output
t Time T CD(595) X
Number of entries (excluding time)
on each ephemeris tape record. NENT 232 X
Number of interpolations to be
performed NINT 255 X
Time interval between records _
on ephemeris tape . FREQEF 234 X
Logical unit on which ephemeris
tape is mounted INTAPE 233 X
Radius of the Earth ’ RE 500 X
Radius of the Sun ‘RSUN 73 X
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Equation
Symbol

At

*Location

Symbol Glossary (Concl'd)

Program COMMONs*
Comments Symbol Location  Input Output

Interpolation interval (dimensionless) PER 256 X

Storage array of interpolated

quantities VAL(1-.20) 235-254 X
Position vector RV (1-3)=VAL(1-3)

300-302 X
Satellite-Sun vector - RVS(1-3)=VAL(4-6) X
Total acceleration vector G(1-3)=VAL(7-9) X
Solar illumination factor SIF 77 X

Radial distance from satellite
to center of the Earth RVM 91 X

in CQ® array unless otherwise specified.
15. GGRAD

Calculation of the gravity-induced moment exerted on the central body by

the two antenna booms and the optional dipole boom is accomplished in GGRAD.
The dipole boom is introduced into the calculations when the control quantity
DIPQLE is assigned a value of 1. When present, the dipole boom is positioned
perpendicular to the plane of the antennas. All booms are considered to be
rigid, but have a length which is a function of a quadratic in time.

The torque calculation requires specification of the time, the parameters in
the expressions defining boom lengths as a function of timeé, the gravity
vector, the transformation matrix from the body to the inertial frame, the
angular position of the antennas, and the lineal mass density of the booms.

In addition to the torque, GGRAD calculates the instantaneous value of the

angle between the dipole {body pitch axis) and the normal to the orbital plane.
The routine also provides ITB3 with boom lengths and their time derivatives.

Eg vations:

T, =k Qupld s )
,-.-i(ypA smaicosai
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ki = | —r3j 8yB / B
. (3585 — 115 8z8) /Ly

“1j 8yB/B;

/2

B; = [(3; 8,p)° + (t3j 8xp = £1j8;8) + (11 8yp)? ]
-1

aj = cos™" [(ey; 8, + 1358,8)/8 Ly ]

gp = (O g

¥ cos aq; > 0, tli-LAsinﬂi

I.'2j =0

t;i = LA (ol 1] ﬁj

If cos ai < 0, tli = "'LA sin Bi

r2i-0

r3; = = Ly cos B,
Moment Exerted on the Dipole:

- A3
TD = QD (2#‘) LD sin aD cos aD)
s 8zB/BD
0
~s 8:5/bp
L2 2,1
Bp = (gyp“ + 8,8")

ap = cos™! (gyB/g)
s 18 assumed + 1 so long a8 cos ap>03 for cos ap<0,s is set equal to -1,

”~

kp =

/2

Boom length as a function of time.

Antenna:
Ly® = by + by &=t,) + by (t=t,)?

La@® = by + 2b, (t=¢))
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Dipole:

Lp@® = dg + dp (t —¢)) + dy (5-¢)?

Lp® = d; + 24y (t=¢,)
Discontinuities in deployment, such as occur during deadbeat techniques,
can be simulated by using the STACK provision described under the
INPUT section of this appendix., Since t, is recomputed each time

STACK is encountered, it is necessary to re-evaluate the boom deploy-
ment constants b and d for these particular times.

Angle between Pitch Axis and the Normal to the Orbital Plane:

The unit normal to the orbital plane is:

i
xV

e

P =

e

|

The unit vector in the positive direction of the vehicle pitch axis is 95
The desired angley is then

"
x V|

7 =cos”l (3 - Pp)

cos™! (p; C1z + P2 Cpp + P3 C3)
Symbol Glossary

COMMON
Equation Comments Program Location  Input Output
B; Normalizing factors for ij and ﬁd B
Bp respectively BD
by Parameters in the expression for BMLO 226 X
by antenna length B61 227 X
by B62 228 X
G;; Element of the transformation Cc - 306 X
! matrix (C) DBL 229 X
d
0 Parameters in the expression for DGl 230 X
d dipole length DG2 231 X
d
2
Control quantity indicating presence
of the dipole boom by a non-zero
value DIPQLE 219 X
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Symbol Glossary (Cont'd)

COMMGN
Euation Comments Progra.m Location Input Qutput
B The magnitude of the gravity vector G
8 The gravity vector G, expressed in GX 36 X
8y inertial components GY 37 X
82 GZ 38 X
GXB
8y The gravity vector expressed in
b body components GYB
,
GZB
k:
4 Elements of the unit vector UKl
kzi which specified the direction of UK2
ksi the torque on the jth antenna UK3
i Element of the unit vector ﬁD' which
D specified the direction of the torque
on the dipole DK
£A = Ly/R, » dimensionless antenna length BARL
f‘D = Lp/R, » dimensionless dipole length BARLD
L A® Length of an antenna BOQOML 358 X
L.® Time derivative of antenna length BLDGT 223 X
i‘D(t) Length of the dipole DBL 58 X
Lp) Time derivative of dipole length DLDOT 222 X
N Number of antenna booms . NBOOM 362 X
Pj Element of p, the unit normal to
the orbital plane P
R, Distance from the center of the
earth to the satellite center of
masgs RHO 91 X
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_I:_“ﬂ uation

n
3

Symbol Glossary {(Concl'd)

Comments

Elements of R, the satellite position
vector

x, z components of the vector de-
fining the angular orientation of
the antennas

Sense of the vector defining the
orientation of the dipole; i.e., s
can be (+) or (-) unity
Instantaneous and initial value of
time

ith component of the torque on the
jth antenna component

ith component of the dipole torque
vector

ith component of the total torque
vector

Angle between the orientation vector
for the gravity vector and the jth
antenna

Angle between the orientation vector
for the dipole and the gravity vector
E 3

Angular position of the jth antenna,
reconed with respect to the (+) z-
axis

Earth's gravitational constant

Boom lineal mass density

Cc-29

» COMMON
Program Location  Input Qutput
RIX 301 X
RIZ

RI

R3

SGNRD

T CD(595) X
TO CD(594) X
GRVT(J,])

DGRVT

GRAVT(D) 359-361
ALPH

ALPHD

VBETA 351

GMU 501

TAU 357 X



16. OB3

This subroutine is not presently used in the computer program, It consists
of a dummy block which causes control to exit immediately after entry to
the subroutine, This subroutine will eventually be used for the computation
of orientation commands associated with the active control system.

17. CMB3

(Same as .DCB3). This subroutine will calculate the control moments called
for by @CB3,

18, MSB3

The function of this subprogram is to sum the components of the moments
from the various external torques acting on the rotating body. At the
present time, the only external torque being considered is due to the gravity
gradient effect. The result is a simple MSB3 subprogram having only a

few statements. Later in the dynamics study, when additional torques are
present, the coordination effort between subroutines supplied by MSB3 will
become apparent.

Symbol Glossary

Equation . Fortran COMMON
Symbol Comments Symbol Location Input Output
T The three components GRAVT (1) 359 L X
T, of the gravity gradient GRAVT (2) 360 X
T, torque vector. GRAVT (3) 361 X
4
EM“ The three components of SIGMP 270 X
i '
M2 the total external torque SIGMQ 271 X
j
%M acting on the body. SIGMR 272 X
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19. ITB3

This subroutine calculates the inertia tensor (I) and its time derivative (i).
Only principal body axes are considered; the off-diagonal terms in both
tensors are then zero. The elements of (I) and (1) are calculated as functions
of time as follows: ‘

I3 = 1 L o 13 @ sin?
11® = 011 + -3— P t) sin® a

4
I @) = I, + -—3— pl3 (t) cos? a

22

4
Ig3() = I + 5 p13 (t)

33
hence
Iu (t) = 4plz(c) l () sin? a
Ly @® = 4p12@ 1 () cos? a
I ) =4pl@®1®

where I;(t) and iﬁ(t) are the diagonal elements of (I) and (1),
respectively, and

the linear mass density of the antenna

P =
1(t) = the instantaneous length of the antenna
a = the antenna-vee half angle.

amdl011 s I

and I are the moments of inertia at t = 0,
022 °33

In addition to calculating the moments of inertia due to the main antenna,

ITB3 calculates the inertia components due to the two cross orbit dipole
antennas:

2 3
AID(t)a? plD (t"tD)
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This term must be added to I;;(t) and I,,) when the dipole is considered
in the analysis; I is the length of the dipole antenna and t_ is the time of
initiation of the dipole deployment, From the above equation, the time rate
of change of Alp(t) is obtained:

Al @ = 2 plp? (t=tp)ip (t—tp) ..

The quantities obtained directly from input arep, e, l°‘i and tp, whereas
1

i, i, ip and I'D are calculated in the GGRAD subroutine.

Symbol Glosaary

Equation Program COMMON
Symbol Comments Symbol Location Input Output
~2ymool —omments ~ympo.
I, @ the diagonal elements of BIZZ 287 X
I, (® the inertia tensor (I) at BIXX 285 X
13‘3 (t) any time (t). BIYY 286 X
I°11 the elements of the BIZZ0 218 X
Iﬂ22 inertia tensor at BIXX0 216 X
l‘,,33 timet = 0. BIYYO 217 X
p Linear mass density of DENS 225 X
the antennas
0] the instantaneous length BOOML 358 X

of the antennas
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Symbol Glossary (Concl'd)

Equation Program COMMOEN *

Symbol Comments Symbol Location Input  Output
a the antenna-vee half BALPHA 224 X

angle

I; the time derivatives of BIZZT 287 X
izz the elements of the BIXXT 285 X
I3 inertia tensor BIYYT 286
Aly the moment of inertia DELI calculated internally
AiD due to the dipole antenna, DIDOT calculated internally

and its time derivative.
* location in CP array.
20, MIB2
This subprogram calculates the derivative of the angular rate vector of the
body axes. The complete equations of motion are written in the rotating

body frame and all significant terms in these equation are included in the
program. The equations of motion may be written as

o = (1 (= ﬁi-(i);—;xll):o)
j

where
A = the angular rate vector of the body
@ = the time derivative of the angular rate vector

n = the inertia tensor of the body
M, = the jth torque applied external to the body

the time derivative of (I).

-~
bt o
~
i
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The "off-diagonal" terms in the inertia tensor vanish when principal body
axes are used. To avoid unnecessary calculations when these cases arise,
a control word called "IPROD" is used in the subprogram. The correct
usage of IPRPD is described below,

IPROD Program Control
1 (i) = 0, and no off-diagonal terms in (I) are calculated

or used during execution.

2 No off-diagonal terms are present in the calculations,
however, the diagonal terms in (I) may be non-zero,

3 (i) = 0, but all terms in the inertia tensor are used in
the calculations.

4 The complete set of derivative equations for & are
used in the calculations,

Since, by definition, the inertia tensor and its derivative are symmetric
about the diagonal, six terms are necessary to describe all the elements
in (I) and six terms are necessary to describe (I). The terms in (I) and

(1) are obtained from ITB3 which was previosly discussed. 2 :Mi is obtained

in MSB3 for usage in MIB2,

Symbol Glossary

Equation Program COMMON*

Symbol Comments Symbol Location Input  Output
°.’x derivative of the angular PDOT 260 X
(,‘,y rate of the body about its QDOT 261 X
a‘)z x, y, and z axes A RDOT 263 X
Wy angular rate of the body PB 315 X
oy about its x, y, and QB 316 X
w, Z axes RB 317 X

* Locations are in the C® array
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Symbol Glossary (Concl'd)

Equation Program COMMON=*

Symbol Comments Symbol Location Input  Output

n the inertia tensor BIXX 288 X

BIYY 289 X

BIZZ : 290 X

BIXY 291 X

BIXZ 292 X

BIYZ 293 X

e the time of the inertia BIXXT 291 X

tensor BIYYT 292 X

BIZZT 293 X

BIXYT 294 X

BIXZT 295 X

BIYZT 296 X

Eﬁi The total torque acting SIGMP 270 X

i on the body SIGMQ 271 X

SIGMR 272 X

* Locations are in the CO array

21. PCB2, PCB3 and PCB4

These two subroutines supply the differential equations which describe the
motion of the body axes. PCB2 uses a direction cosine analysis and PCB3
utilizes quaternions to locate the body axes. The two methods are described
below,
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a, PCB2

The direction cosines, describing the location of one set of rotating
axes with respect to another set, may be defined as:

(€) = (C)(w)

where:

(w) = the skew~symmetric matrix of the angular {0 - o o,

z
rate about the body axes =l o _,Z
z p.4

-0y @p o

(C) = the direction cosine matrix locating one set of axes with
respect-to another.

(C) = the time derivative of (C).

In 1048, the (C) matrix rotates the body axes into the inertial axes,

The equation (é) =(C) (w) comprises nine differential equations with
nine unknown quantities; however, due to the orthogonality and normality
of the transformation matrix (C), the nine differential equations can be
reduced to three differential equations. In reducing the number of
differential equations, various singular solutions and ambiguities

occur which make it undesirable to integrate only three equations. It
has been found that a reasonable compromise is six differential
equations containing no singularities or ambiguities., These six are
listed below:

Cy1 = Cpp @y — Cy3 @y
Ci2 = C13 0y — C1 @,
Ci3 = C1; @y = Cp3

Cy; = Cpp @, = Cy3 @

C23 -’CZI &)y - sz mx
Cy2 = Cz3 o ~ Cg1 @,

The remainder of the (C) rﬁatrix is calculated in XCB2.
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§ynibol Glossary

Equation Program COMMON
Symbol Comments Symbol Location Input Output
| 9 element direction C(1) 306 X
cosine matrix: (the . .
< . . .
2 dimensional array C(9) 314 X
is stored by rows)
time derivative of (C) CDOT(1) 20 X
(C) containing the first .
two rows CDD.T {6) ..25 X
Wy angular rate vector of PB 315 X
wy the body in body QB 316 X
©, Coordinates RB 317 X
b. PCB3

This subroutine calculates the time derivatives of the quaternion com-

ponents. The four components of a quaternion may be expressed in

terms of a. , the three direction cosines of the axis, and #, the rotation
that carries the body frame into the inertial frame.

Eguations:

The time derivatives are easily express in terms of the angular rate

and the quaternion components themselves.

90 ( 0 Pp
1 1 —PB 0
=72
) -Q Rp
-q3 - L _RB —QB

% Rp
Ry Qp
0o -Pg
Pp 0 J
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Equation

Smbol

Pp

Qp

%
=
1

13

q0
u
2

43

where, as indicated above,

qg = cos 6/2

9 = a sin 6/2, j=1,2,3

] ]

Symbol Glossary

Comments

Angular rate of the body
about its x axis

Angular rate of the body
about its y axis

Time derivatives of the
quaternion components

Quaternion components

Angular rate of the body
about its z axis

c. PCB4

Program COMM®ON
Symbol Location Input Output
PB 315 X
QB 316 X
QDOTO 16 X
QDO TI 17 X
QDOT2 18 X
QDOT3. 19 X
Qo 26 X
Ql 27 X
Q2 28 X
Q3 29 X
RB 317 X

This subroutine is identical to PCB2 with the exception that all
nine direction cosines are calculated instead of the first six

only.
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22. CHECKS

This subprogram allows 1048 to compare any two COMMON locations in
various fashions and, if the conditions for a program stop are fulfilled,
CHECKS resets a control word to accomplish the stop. When a stop is
indicated, the control word ISTOP is set equal to the value one (1), inter-
polation on time occurs and return is made to the (EXEC) subroutine. In
(EXEC), a final integration is made and then a final block of output is printed
before exiting to the (MAIN) program.

The checking sequence is accomplished by a pair of fixed point arrays. These
arrays contain the common locations of the variable which are to be compared,
and are read into the program as part of the input. The FORTRAN names

of the arrays used both in CHECKS and the data are ICON and ICHK. A
distinction between a CD COMMON location and a C® location in CD must

be made. The reason is that CQbegins at CD location 2001, and hence

CQ(N) eorresponds to CD(2000 + N). To avoid difficulties, the CD COMMON
locations which are less than 2001 for ICHK and ICQN are read into the
program as negative numbers and the CQ locations are positive, ICHK
represents the COMMON locations which do the checking and ICQN is the
array of C@QMMON locations which are to be checked. CHECKS utilizes

ICON and ICHK in a variety of ways including subtracting, multiplying,
dividing and taking the absolute values of the respective C@MMON locations.
Checking occurs on both fixed and floating point numbers depending upon

the location of the check in the ICQN and ICHK table.

As an example, let us require that a stopoccurs when the floating point
number is CD(595) becomes greater than the floating point number in CQ
(1000), i.e., the stop occurs when C@ (1000) - CD (595) < 0. Reference to
CHECKS indicates that this operation may be accomplished by using any

of the first 10 locations in ICQN and ICHK in the following manner. Read
in ICHK 1000 and ICOQN - 595 and the program stop will occur when the
above conditions are fulfilled,

23, COMPEX

The primary purpose of COMPEX js to do all the auxiliary computations
which are necessary or convenient for printing, At present, the only
computations made in COMPEX are the location of the rotating body
frame with respect to the local coordinate frame. This transformation is
convenient for the purpose of interpreting the motion of the rotating body.
The computations performed in this subroutine are described below.

Let us define a local rotating coordinate frame as R, 1‘2 ,» and 3 where ﬁ is
g ] ]

the unit vector in the direction of the radius vector from the center of the
Earth to the center of mass of the satellite.
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>

-
RxV

A
-——-—‘va | where V is the unit velocity vector of the center of mass

Then, let =

of the satellite, and finally, let k= ;\)x R , hence defining the third component
of the orthonormal triad. The components of these three unit vectors de-
fine a transformation from the local to the inertial system.

Transforma.tiohs'between the inertial, local, and body-fixed coordinate
frames can be defined as follows, Let:

1= (A) ¢
¢{p = (E){

Y -
¢y =(C)¢p
where Z is any vector and the subscripts I,L, and B refer respectively to
coordinatization in the inertial, local, and body frames. (A), (E), and (C)
are the transformation matrices between the various frames as indicated.
The direction cosine matrix (C) can be written in terms of the other trans-
formations:

(€) = (A) (B! = (a) (BT
The 3-2-1 Euler rotation set is characterized by the consecutive angular
notations a,8, andy, which may be obtained directly from the above equa-

tions.

Symbol Glossary

Equation Program COMMON *
Symbol Comments Symbol Location Input Output
(C)' Direction cosine matrix | cmmn 306 X
(A) Inertial to local coordinate
transformation A(L, T) Calculated from Rand V
(E) Euler transformation Calculated
internal to
subroutine X
a 3 . ALFAE X
: Euler
B 2 Rotation BETAE X
Angles .
y 1 GAMAE X

*Locations in CDarray,
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24, QUTPUT

Subroutine Q)UTPUT controls almost all of the printed output generated by
1048. Any quantity in COQMMO®N storage may be printed; in addition, the
selection of these quantities is made at execution time,

Complete output control is thus determined at time of input, including all

of the Hollerith text and the units of the output quantities, In addition to

the BCD information discussed above, subprogram QUTPUT also has the
flexibility to write binary tapes for any of the quantities in COMMON storage,

The BCD symbolic tape writing is controlled by four arrays of information,
two of which contain Hollerith text, Of the remaining two arrays, one con-
tains the COMMON locations specifying the quantities which define the vari-
ables to be printed, and the other array contains the multiplicative factors
defining the units of the output quantities. These arrays exist for both fixed
and floating point numbers. In addition to the Héllerith text which is printed
on the top of each page of output, a heading consisting of up to 60 characters
is available, Discussion of the individual arrays and their usage is pre-
sented below,

a. Hollerith Text

Four arrays, two for fixed point and two for floating point designations,
are available, The input names of these four arrays are CN, CM, IN,
and IM, respectively. The heading which may be printed at the top of
each page is controlled by the word HEAD, To illustrate, let us sup-
pose it is desired to print the following Hollerith text at the top of each
printed page:

GRAVITY GRADIENT CASE, DELTA = 24 DEGREES

TIME PDQT QDT RDOT
SECS DPS DPS DPS
LADM ICQUNT :
MQ@UNIT

This print-out is accomplished by having the following cards in the da-
ta deck where no symbols appear in column 1 or columns 73 to 80 on
the standard punched computation card:

HEAD "GRAVITY GRADIENT CASE, DELTA = 24 DEGREES"

CN/TIME /PDOT/QDOT/RDOT
CM/SECS/DPS/DPS/DPS
IN/LADM/ICQUNT
IM/N@UNIT
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111,

b, Numerical Arrays

Numerical information is printed according to the COMM®N location
of the desired variable, .Both CD and CQ locations may be printed;

however, locations in CD below 2001 must be designated by a minus
sign as was illustrated in subroutine CHECKS, Let us agsume some

COMMON locations which may be compatible with the printed heading
above: :

Let TIME be stored in the COMM®N location CD{595)
‘Let PDOQT be stored in the COMMO®N location C®(260)
Let QDT be stored in the COMMO®N location C®{261)
Let RDQT be stored in the COMM®N location C@(262)
Let LADM be stored in the COMMO®N location CD(593)
Let ICQUNT be stored in the COMMON locationCD(586)

The inclusion of the following cards in the data deck will initiate the
printing of the given quantities:

M- 595 260 261 262

M(51) - 593 - 586
The reason for the term M(51) is that the IN fixed point array begins
at the 51st location in M, In the above example, the numerical value
of TIME is printed in seconds, as this is one of the running units of
the program. If one wishes to print the time in hours, the addition of

the following card in the data deck will suffice:

CK 2, 78E-4.
The units of the other printed quantities may be changed accordingly.

Additional features such as controlling the number of printed lines per
page are available; however, these features will not be discussed here.

QUTPUT also permits the writing of a binary (intermediate) tape with the
variable format feature. The control word is INTTAP: if INTTAP = 0, no
tape is written; if INTTAP = 0, writing occurs on logical tape channel
ITPINT. If time (t) is zero, a 10-word heading is written using TN(1-10).
The desired data storage locations are entered into KK, and the desired
scale factors are stored in TK,.

SAMPLE CASE DESCRIPTION

To illustrate the input and output of the digital simulation, we have chosen a
gravity-gradient capture case.
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Initially the body is moving in a 6000-km circular orbit, Its angular rate, mea-
sured with respect to inertial space, is zero.

We shall examine the input line by line, indicate the function of each quantity,
and, when appropriate point out the corresponding line of output, A facsimile
of the input and a portion of the output may be found in the two computer run
pages that follow.

The first 17 lines generate the heading at the top of every page of printed out-
put. Lines 1-7 contain the names of the quantities to be printed, lines 8-11 call
out the physical units of these quantities, while lines 12-17 specify the locations
in the C® array where the numerical output is stored.

For example, consider the fourthline of the heading in the computer run
(page C-46): This line contains the four quaternion components, q5 , q; » 93 »

q3 ; the Euler angles of the local coordinate system,q » 8, y and the diagonal
elements of the inertia tensor, I , » I, . The quaternions are dimension-
less, the Euler angles are measured in degrees and the inertias bear the units

of slug-ftz. Finally, the quaternions are stored in CQ® locations 26-29; the

Euler angles, in locations 55-57; and the inertias, in locations 285-287,

Different applications may require different physical units. Thus, provision
has been made for external specification of scale factors for the output, Lines
18 and 19 make use of this provision in converting angles from machine units
of radians to the desired output units of degrees.

Since the present edition of PRESET specifies lines 1-19 automatically, they
might have been omitted from the sample case., However, the heading and scal-
ing specification were read in expressly to provide a concrete illustration of
how the heading is set up in the event it becomes desirable to alter it,

Lines 20 and 21 contain certain control quantities common to a great many cases,
e.g., the CQ locations of T, TSTQP, and print interval, values for the control
quantities KA-KD, vehicle mass (no longer needed), and finally, the number of
the output tape. This last quantity need not be read in when the deck is used

at the NASA facility, since the appropriate input tape (number 3) has already
been specified in PRESET,

Data for writing an intermediate tape are given in lines 22-25, INTTAP# O in-
dicates that an intermediate tape is to be written while ITPINT = 12 calls out
the number of the tape unit upon which the intermediate tape is mounted. Line
23 contains the CQ locations of the quantities to be written on tape, and lines
24 and 25 specify the corresponding scale factors to be used when plots are ge-
nerated by the tape,

The data peculiar to this particular case begins with the heading card, line 26.
Line 27 contains the number and angular position of the symmetrical antenna
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booms, & control word commanding C@NVIN to generate an identity ""C'-matrix,
a table of print interval, and the initial value of the time increment to be used
in ADMS4, the integrating routine, Values for the terminal running time, boom
density, and initial boom length are found in line 28, (The initial and final boom
lengths are identical because the coefficients of the iinear and quadratic terms
in the boom length expression are not specified and are, accordingly, set to
zero,) Line 29 gives the initial values for the diagonal elements of the inertia
tensor, and for the position and velocity of the body,

Finally, line 30 contains the control word 1 in column one, which specifies to
the INPUT routine that the data for this particular case are now complete,
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APPENDIX D

TIP DEFLECTIONS OF SPIRALED ANTENNA

A well known result of beam deflection theory is that a beam having different
values of the two principal cross-sectional moments of inertia will bend in a
direction skewed from that of an applied force when the applied force is not
aligned with a principal axis. In order to reduce the tip deflection normal to the
plane defined by the applied force and the undeformed beam axis, the beam may
be twisted or spiraled along its length., The result is an effective averaging of
the cross-sectional inertias and beam bending properties. The following analy-
sis was suggested and carried out in part by Dr. Wallace Vander Velde of M.I. T.

Consider the beam cross section shown in figure D-1. The Y and Z axes are the
beam principal axes at the root. Define a twist rate T(rad/ft). Then the prin-
cipal axes y, and z, twist along the beam according to the relation

z t(x)

Zp(x)

O
-

Op(x)=Tx YP(X) = y cos Tx—2 sin Tx
: (D-1)

zp(x) = zcos Tx +y sin Tx

Yo(x)

85-00%2

Figure D-1 BEAM CROSS SECTION

where x is distance from the root along the undeformed beam axis. Apply a
constant distributed force f (1b/ft) along the length of the beam in a plane skewed

at some angle 6 relative to the Y principal axis at the root, Then at a point x

on the beam, the exiernal load on the portion of the beam beyond x is f(1-x), where
! is the length of the beam. The external moment at x due to this force has

magnitude 1/2£( l-x)z. The components of this moment about the local principal
axes are

1
Yo - -5 f(l—x)zsin(Tx—OF) (D-2)

] .
MZP = —2-—f (l—x)2 cos (Tx - OF) . (D-3)

The se moment components produce a local beam curvature in each principal
direction of



a2 M

o T (D-4)
dxz EIz

L‘.z_fz M (D-5)
dxz Ely

where Iy and I; are the principal cross-sectional inertias. Reflected to the y
and z axes defined at the root, the local curvatures are

2 M
d z Myp
T . P cosTx - =2 sinTx (D-6)
dx? Elz Ely
a2z Myp sz ) (D-7)
= = wwm— 08 TX - == sinTx
dxz Ely Elz

;:5 = -2-;:?2- (l-x)2 cos Tx cos (Tx - 0)
f -
+ ;E_I;, « -x)2 sin Tx sin (Tx - 6 ) (D-8)
2 f
.S.f. = —— (-x)2 cosTx sin (Tx - 6)
dx? 2EL,
¢ (D-9)
- E'E'"“ x)2 smecos(Tx—GF) .
Equations (D-8) and (D 9) can be integrated over the interval 0 < x <! from the
initial conditionsy =z =y’ = z’=0-at x = 0., The result is the t1p deflections

v} and z(l) along the root principal axes:

. f14 » (1 I ( L 3 . 3
= - R —— + E
y (1) TeeT, cos O + Iy cos 6p Iy 1212 g

: 1 :
. z 2 3 3 . D_lo)
(cos lea_l)J_*. sine (l e ] Cosnn e Cm—— . oAe——— slnleJ % (
- F L AT 303 214 rd

£14 L I 3 3
z(l) s == {-—3in 0 (1+"""‘> + sin Op ( — — [ +
IGEI A )j- I}' lsz 2141-4

I ,
(°°’21T‘1)]‘°°s Op (1*"'2"‘) L2 + -2 sin 21'1'] - (D-11)
L JIiT 33 g4 e .



Note that when L =L, the tip deflects in the plane of the applied force distribu-
tion, in the direction O + 7. When the number of twists N, where

27N = IT , (D-12)

is large, the tip again deflects in the direction Op + 7. The magnitude of the tip
deflection for large Nis

4 + 1
5y = Se Yrh (D-13)
8E 21y L

This value is the tip deflection corresponding to an effective cross-sectional
inertia of

211
Lo = mmdoim o (D-14)
eff Iy+Iz

Thus the reciprocal of I is simply the average of the reciprocals of the prin-
cipal inertias:

Lot Eed) (D-15)
Legs 2\l I
and the beam bending properties have been averaged.
To verify the averaging of antenna bending properties, evaluate the components
yr(l) and z (I } in the plane and normal to the plane of the applied force, respec-
tively:
ygp (1) = y(l) cos O — z (1) sin O {(D-16)
zp (1) = y (1) cos O + y (1) sin 6 (D-17)

Substitution of equations (D-10) and (D-11) into (D-16) and (D-17) yields

0 £14 i(l Iz) ( L ) o |2
Vg = += 1 + ~ =} cos 20
16EIL, I, 1, 12 12
L
3 , 2 3 3
( 20T - 1) | + (1— )sin 26 [ - + sin ZlT]}
YT s ] L FLTOT 393 21414

f
I
2Zp) =Terr 1o -2V sin 20 . 22 <cosle-1>]
z I sin F lsz 2I4T4

- cos 26 [i— 2 + 43 Z sin 2lT:|} (D-19)




It is clear that as the number of twists becomes large,
14
8E I ¢

ygp(l) »

zF(l) + 0.

Figure D-2 shows the out-of-plane tip deflection z (l) as a function of the total
number of twists N and the angle of the applied force 0 for the following case:

f 10-7 1b/ft

Iy
L

1.070 x 10-4 in, 4

1.382 x 104 in, 4

E 19.0 x 106 1b/in. 2

1 750 ft.

is

For reference, the value of Ieff

Lg = 1160 x 1074 jn.4

and the averaged in-plane tip deflection is

@) il 258 f
. ——— - t.
’F 8E I

It is evident from figure D-2 that as few as five twists reduce out-of-plane de-
flection to relative insignificance -- less than 1 percent of the in-plane deflection.
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APPENDIX E

LINEAR EQUATIONS OF MOTION FOR ELEMENTIZED
CANTILEVER BEAM

Consider a simple cantilever beam simulated by eight lumped mass and spring
elements joined by rigid, massless sections: ’

Mass elements arem =pl (E-1)
El

Spring constants are K = T (E-2)

Section lengths are ! =_;-J_ L (E-3)

Number of elements is N-8 . (E-4)

The equations of motion of the spring-mass simulation are derived from
Lagrange's equation:

d (T-V) 9(T-V) _

dt 9§ EP (E-5)

where the generalized coordinates are the deflections u, of each mass element
normal to the undeformed baseline, T and Vare the system kinetic and potential
energies, respectively, and Q, the generalized force associated with the kth
coordinate,

The kinetic energy is simply

8
Tem ) w2 (E-6)

k=2



(Note that u, is identically zero.) Then

d 9T d

s e = e . - .s E-
de du,  de (miy) = miy (E-7)
I (E-8)
O uy

The potential energy is the total stored energy in the spring elements,
7

.
Ve—>K A62 (E-9)

n
[
—

where A6, is the change of slope or bending angle at the k th element, Note also
that Ay is zero since no forces act on the half section at the tip. The Ag's
are easily written in terms of the deflections u (assumed small):

1
Aek = -l--(uk+1—2uk+uk_l). k=347 (E'lo)

Because of the boundary constraints at the fixed end, A6; and AGZ must be eval-
uated separately; they are

1
Ael = -l—(uz) (E-ll)

1
A92 = T(—2u2+u3) . (E~12)

These relations follow directly from the more general equation (E-~10) for A,
when u; and a hypothetical u, are taken identically to be zero, Including u and
uy for now, write

7
1 X
V=7 2 Z (yy = 20 +u_p? (E-13)
e 1
Then
L AR (E-14)
dy



A

K
a_u].‘. = .;.2- [(“k+2 2w gty = 2(w g = 2up v )+ (o - 20 g+ “k—2)]

K
= —2—' (uk+2—4uk+l+6uk—4uk__l+uk_2) » (E-IS)
l
Observe that for relation (E-15) to be valid for k = 7, one must determine a
hypothetical ug by requiring Abg to be zero from equation (E-10):
u = 2ug —uy ¢+ {E-16)

For (E-15) to be valid for k = 8, a u;; must similarly be determined by requir-
ing a hypothetical A6, to be zero:

ujg = 3ug — 2uy: (E-17)
The generalized force Q is the incremental work done by outside forces during
a virtual displacement 8y, of the kth mags, divided by 8y, . Itis easily shown
that:

where f, is the net extersnel force acting on the kth mass element in the direction
of v, from which

Q = fi- (E-19)

The equations of motion are cbiained by substituting expressions (E-7), (E-8),
(E-14), (E-15), and (E-19) inte Lagrange's equation (E -5):

“ El
muk + 73— (uk+2—4uk+3+6@§§w4uk_1+uk__2) = fk (E-ZO)

kranges from 2 to 8, witi: the constraints

u, = 0
ul = 0

(E-21)
U9 = 2u8--u7

ujo = 3ug - 2uy

as before. The spring constant K has been replaced by EI/! according to rela-
tion (E-2). Note that equation (E-20) is simply the difference equation corres-
ponding to the familiar Bernoulli equation for linearized beam dynamics:



"

a4y 324
dz4 a2

= f(z,t)

(E-22)

where f(z,t) is external force per unit length along the beam. Equations (E-21)

are the difference equations corresponding to the boundary conditions on the

cantilever beam:

u(0) = 0
u’(0) = 0
u”’(l) =0
u”’(l) =0 .

(E-23)

Writing equations (E-20) in matrix form after substituting the constraint equa-

tions (E-21) yie}ds

U, 6

i3 -4

iy 1
. El

m{Y¥ ) + — 0
13

g 0

ug 0

-4

6

-4

0

0

0

0

0

-4

6

-4

1

-4

-2

-2

1

oy

-

42
u3
ug
us
v
uy

ug

(E-24)

To determine the natural modes and frequencies of the elementized cantilever
beam, set the right-hand side of equation (E-24) equal to zero, and Bubstitute

for u, as follows:

“k = eimt¢k.

The result is the homogeneous equation of motion:



_ S
6-A -4 1 0 0 0 0 ¢,

-4 6 -4 1 0 0 o0 és

1 -4 62 -4 1 0 0 ¢4

0 1 -4 6x -4 1 0 $s ) =0 (E-26)
0 0 1 -4 6-A -4 1 6

0 0 0 1 -4 5= =2 .
O 1 -2 1A \ g

where
3
A ="% w2 . (E-27)

The eigenvalues A (n = 1 to 7), obtained by setting the determinant of the above
matrix equal to zero, determine the natural frequencies of the elementized beam:

w, = [, _EL m=d (E-28)

ml3 sec

The corresponding values ¢(£) are the natural mode shapes of the elementized
beam. Recall that the natural frequencies of the continuous cantilever beam
are

El rad
®n(cont) = Cn Pl4 sec (E-29)

where cy = 3,52, c; = 22,05 etc, As the number of elements Nis increased
without bound, the values of A, must approach c; 2/N4 , The desired accuracy
of o, and ¢k") for the lower natural modes of the elementized beam determines
the minimum number of elements that is acceptable. .

The eigenvalues of matrix (E-26), calculated by digital computer, and the corres-
ponding values of ¢ “Z/N4 are as follows:

E-5



0.0030685

A

n

0.12006
0.88138
2,9559
6.5469

10.920
14.573

an /N4

0.0030175

0.11853
0.9294
3.5693
9.7514
21.763 .

42,449

The natural frequencies of the lumped-mass simulation and those of the continu-
ous cantilever, evaluated for EI = 13, 85 slug-ft2,p= 0.000482 slug/ft, and L=

750 feet, are then:

w, X 103 (cps)

Dp(cont

y X 103 (cps)

0.1702
1.065
2.888
5.284
7.86

10.15
11.73

0.1688
1.058

2,962

5.804

9.59
14.33
20,02 .

It is clear that the eight-element lumped-mass simulation represents the first
four natural frequencies with acceptable accuracy; the accuracy degenerates

rapidly for the higher frequencies.

The natural modes shapes of the simulation, each normalized to a tip deflection

of 1.0, are the eigenvectors of the matrix (E-26).

puter, these are as follows:

Element B (D $y (D)
2 0.0506  -0.247
3 0.142 -0.541
4 0.266  -0,712
5 0.412 -0. 657
6 0.573 -0.354
7 0.742 0.136
8 0.914 0.712

Calculated by digital com-

¢ 3 G B () B (©) (7
0.530 -0.777  0.961 -1.082 1.149
0.773 -0.444 -0.314 1.200 -1.886
0.376  0.588 -0.733 -0.524 2.314

-0.328  0.595  0.738 -0.522 -2,311
-0.680 -0.407  0.335 1.212 1.895
-0.207 -0.645 -0.874 -1,018 -1.096
0.565 0,452  0.375 0.327 0,301



The natural mode shapes are shown graphically in figure E-1, It is evident

that the first four modes are well represented by the lumped-mass simulation,
but that the accuracy degenerates with the fifth and is poor for the sixth and
seventh, Figure E-2 compares the simulated mode shapes with the actual mode
shapes for the first and second modes, and figure E-3, for the third and fifth
modes. The discrepancy is essentially indistinguishable for the first two modes,
and is of minor significance for the third; the fifth mode is simulated with
noticeable inaccuracy, yet should be acceptable for most applications.
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Figure E-1 NATURAL MODE SHAPES FOR EIGHT-SECTION, LUMPED-MASS CANTILEVER
BEAM SIMULATION
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APPENDIX F

DEAD BEAT CONTRCL FOR THE DEPLOYMENT ACQUISITION PHASE

1. Summa.ry

A boom deployment technique for the radio astronomy satellite is described
which may be capable of reducing the oscillations in attitude induced by normal
antenna deployment. Basically the technique requires control over the satellite
rotational energy by means of modulation of the antenna deployment rate.

2. Introduction

After injection into the desired orbit, it presently anticipated that a magnetic
control system will align the satellite core (booms undeployed) to the local
vertical. The magnetic control system is then deactivated and boom deployment
is initiated.

The transition phase to the desired end conditions of fully deployed antennas and
properly oriented body is referred to as the deployment/acquisition phase.

Several different techniques may be employed to effect attainment of these state
conditions. Of primary interest is the technique designated ''dead beat control!

3. Discussion

Let us consider the planar problem for a circular orbit. The satellite central
body is initially aligned with the local vertical such that the x,y, z axes are;
aligned with the velocity vector, normal to the plane of the orbit and
colinear with the local vertical,respectively. For the satellite to maintain this
alignment, there exists, with respect to an inertial reference, a rotation rate
about the satellite y body axis equal to Q, the orbital angular rate. Thus
between the inertial system and the system rotating with the satellite there
exists a relative angular rate, @ , so that angular velocity expressed in the
inertial system is the angular velocity expressed in the rotating system plus &,

Neglecting external forces, which are small during this phase, the inertial

rotation rate of the satellite at the instant of full deployment, «_, becomes:

Iyo
(I)D = Q

Iyd




Since the pitch moment of inertia increases by several orders of magnitude
during deployment, the satellite has virtually stopped rotating relative to inertial
space. However, relative to the local vertical reference frame it has a rotating
rate of - 1, The pitch attitude angle now tends to increase and would do so
indefinitely if wp and the external forces were neglected. However, a 'righting"
torque due to the gravitational gradient is introduced and opposes this increase
in the attitude angle, Expressed in the rotating system, this torque, T, is
3

T= — a2 (1, -1,) sin26 (F-1)

where I, , I, are the roll and yaw moments of inertia,respectively, and the
rotational kinetic energy, K.E., is:

1
KE. = — I 0z, (F-2)

As the satellite slowly swings away from the local vertical at a rate 8, the attitude
angle reaches a maximum value 6, , . At this point the rotational angular
velocity is zero; thus the inertial angular velocity is {.

The angle 6, .. is evaluated by equating the kinetic and potential energies;
max
1
-1, 02 - Tdé (F-3)
2 W ‘

where T is obtained from equation (F-1). For the RAE satellite, the pitch, yaw
and roll moments of inertia are:

where a is the antenna half angle and p = mass per unit length of each boom,

! = length of booms. Although the boom mass constitutes less than 25 percent of
the satellite mass, the booms contribute nearly all the inertia as significant
boom deployment lengths, e, g., 100 feet, are attained. The solutionl to equation

{F-3) for an initial pitch attitude angle of zero is:

I RAD, A Proposal to Investigate the Dynamic Characteristics of a V-Antenns Radio Astronomy Satellite, Avco RAD
B862D-264 (9 October 1964), Appendix IIL.



1 2 1 '
0 =—cos-l[l——-("‘———"‘> (F-4)
max -
2 3 cos2 a - sin2 a

From inspection of equation (F-4) it is clear that 6,  is solely a function of
the ratio of pitch moment of inertia to the difference between yaw and roll
moment of inertia, Furthermore, this ratio is invariant with boom extension
length,

The ramifications of this condition are easily appreciated by considering two
simple examples. Assume that the antennas are quickly deployed initially to
approximately half the final value of their moment of inertia. The value of

0 hax 2attained is approximately 55 degrees; the inertial rate when 0 = 6 . is

), Assume at this point that the deployment of the antennas to the full value is
effected. The inertial rate is reduced to 2/2; thus the rate in the rotating
system becomes - }/2. The attitude angle 6 will now increase to a value greater
than 90 degrees and the satellite will ""tumble. " This mode of antenna deployment
then effects a substantial increase in the amplitude of the oscillatory behavior of
the satellite; clearly, its effect is destabilizing.

Consider next the following case: assume again that the antennas are initially
quickly deployed to approximately half the final value of their moment of inertia.
Now let the satellite attitude angle reach 6.y ~ 55 degrees and then begin
decreasing. The attitude angle will pass through zero degrees when the angular
velocity in the rotating system is Q, and in the inertial system is 2 {,° At this
point ( 6 = 0°) if the booms are fully deployed, the inertially measured angular
velocity will be reduced to . The rotational rate is thus reduced to zero, and
the attitude motion in the rotating frame is effectively stopped. This mode of
antenna deployment,then effects a decrease of the amplitude of the oscillatory
behavior of the satellite; indeed the motion is stopped. Its effect is stabilizing.

4, Analo_g Simulation

A version of this technique was simulated on the analog computer, where the
assumption was made that the antennas are rigid. The rate of deployment was
varied, as well as the time of starting and stopping deployment, to identify the
potential merits of the dead beat control.

In figure (F-1) the pitch attitude angle is shown as a function of time. For a
constant deployment rate of 1/4 ft/sec, the satellite is clearly unstable. An
attempt at dead beat control was made by deploying at 1/4 ft/sec until a length
of 400 feet was reached, then stopping deployment., When the pitch attitude angle
again reached zero, deployment was resumed until the antenna reached a length
of 665 feet, and when the attitude angle reached zero the third time the antenna
was deployed completely. This resulted in rather large oscillations as shown.
Better results were obtained by deploying the antenna to a length of 600 feet
using a rate of 1 ft/sec, then stopping, and completing deployment at the time
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Figure F-1 ANALOG SIMULATION OF RIGID BODY ANTENNA DEPLOYMENT



_ the pitch attitude angle is zero. Figure F-2 shows the results using a deployment
rate of 0.5 ft/sec, with partial deployment followed by complete deployment
after the first zero crossing.

It must be emphasized that these results are for a rigid body, and therefore
caution must be used in attempting to draw conclusions about the method or
results when applied to a flexible body. ‘
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Figure F-2 ANALOG SIMULATION OF DEAD-BEAT ANTENNA DEPLOYMENT
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